Red Fox: An Execution Environment for Relational Query Processing on GPUs

Haicheng Wu¹, Gregory Diamos², Tim Sheard³, Molham Aref⁴, Sean Baxter², Michael Garland², Sudhakar Yalamanchili¹

1. Georgia Institute of Technology
2. NVIDIA
3. Portland State University
4. LogicBlox Inc.
System Diversity Today

Amazon EC2 GPU Instances

Mobile Platforms (DSP, GPUs)

Hardware Diversity is Mainstream

Keeneland System (GPUs)

Cray Titan (GPUs)
Relational Queries on Modern GPUs

The Opportunity

- Significant potential data parallelism
- If data fits in GPU memory, 2x—27x speedup has been shown.

The Problem

- Need to process 1-50 TBs of data.
- Fine grained computation
- 15–90% of the total time spent in moving data between CPU and GPU.

The Challenge

LargeQty(p) <= Qty(q), q > 1000.

Candidate Application Domains

Walmart

amazon.com

NASDAQ

facebook

Large Graphs

Relational Computations Over Massive Unstructured Data Sets: Sustain 10X – 100X throughput over multicore
Goal and Strategy

GOAL

- Build a compilation chain to bridge the semantic gap between *Relational Queries* and *GPU* execution models
 - 10x-100X speedup for relational queries over multicore

Strategy

1. Optimized Primitive Design
 - Fastest published GPU RA primitive implementations (PPoPP2013)
2. Minimize Data Movement Cost (MICRO2012)
 - Between CPU and GPU
 - Between GPU Cores and GPU Memory
3. Query level compilation and optimizations (CGO2014)
The Big Picture

LogicBlox RT parcels out work units and manages out-of-core data.

Red Fox extends LogicBlox environment to support GPUs.
LogicBlox Domain Decomposition Policy

- **Sand, Not Boxes**
 - Fitting boxes into a shipping container => hard (NP-Complete)
 - Pouring sand into a dump truck => dead easy

- Large query is partitioned into very fine grained work units
 - Work unit size should fit GPU memory
 - GPU work unit size will be larger than CPU size
 - Still many problems ahead, e.g. caching data in GPU

- **Red Fox**: Make the GPU(s) look like very high performance cores!
Domain Specific Compilation: Red Fox

First thing first, **mapping the computation** to GPU

Source Language: LogiQL

- LogiQL is based on Datalog
 - A declarative programming language
 - Extended Datalog with aggregations, arithmetic, etc.

- Find more in http://www.logicblox.com/technology.html

- Example

 \[
 \text{ancestor}(x,y) \leftarrow \text{parent}(x,y).
 \]

 \[
 \text{ancestor}(x,y) \leftarrow \text{ancestor}(x,t), \text{ancestor}(t,y).
 \]

 recursive definition
Language Front-end

Front-End Compilation Flow

LogicBlox Parser

- Parsing
- Type Checking
- AST Optimization

LogicBlox Flow

RA Translation

- common (sub)expression elimination
- dead code elimination
- more optimizations are needed

Query Plan

Pass Manager

Red Fox

Red Fox Compilation Flow: Translating LogiQL Queries to Relational Algebra (RA)

Industry strength optimization
Structure of the Two IRs:

Query Plan

- **Module**
 - **Variable**
 - **Types**
 - **Data**
 - **Basic Block**
 - **Operator**
 - **Input**
 - **Output**

Harmony IR

- **Module**
 - **Variable**
 - **Types**
 - **Data**
 - **Basic Block**
 - **Operator**
 - **Input**
 - **Output**
 - **CUDA**

RA Primitives

RA-to-GPU Compiler (nvcc + RA-Lib)
Two IRs Enable More Choices

LogiQL Queries

SQL Queries

Design Supports Extensions to
- Other Language Front-Ends
- Other Back-ends
Primitive Library: Data Structures

- **Key-Value Store**
 - Arrays of densely packed tuples
 - Support for up to 1024 bit tuples
 - Support int, float, string, date

![Diagram of Key-Value Store](image-url)
Primitive Library: When Storing Strings

Key

Value

String Table (Len = 32)

String Table (Len = 64)

String Table (Len = 128)
Primitive Library: Performance

Stores the GPU implementation of following primitives

- **Relational Algebra**
 - PROJECT
 - PRODUCT
 - SELECT
 - JOIN
 - SET

- **Math**
 - Arithmetic: + - * /
 - Aggregation

- **Built-in**
 - String
 - Datetime

- **Others**
 - Sort
 - Unique

RA performance on GPU (PPoPP 2013)*

Measured on Tesla C2050
Random Integers as inputs
Forward Compatibility: Primitive Library Today

- Use best implementations from the state of the art
- Easily integrate improved algorithms designed by 3rd parties

<table>
<thead>
<tr>
<th>Relational Algebra</th>
<th>Math</th>
<th>Built-in</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PROJECT</td>
<td>• Arithmetic: + - * /</td>
<td>• String</td>
<td>• Merge Sort</td>
</tr>
<tr>
<td>• PRODUCT</td>
<td>• Aggregation</td>
<td>• Datetime</td>
<td>• Radix Sort</td>
</tr>
<tr>
<td>• SELECT</td>
<td></td>
<td></td>
<td>• Unique</td>
</tr>
<tr>
<td>• JOIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red: Thrust library
Green: ModernGPU library\(^1\)
 - Merge Sort
 - Sort-Merge Join
Purple: Back40Computing\(^2\)
Black: Red Fox Library

Harmony Runtime

Schedule GPU Commands on available GPUs

Current scheduling method attempts to minimize memory footprint

Allocate \(j_1 \)

Complex Scheduling such as speculative execution* is also possible

Allocate \(p_1 \)
Free \(j_1 \)

Benchmarks: TPC-H Queries

- A popular decision making benchmark suite

- Comprised of 22 queries analyzing data from 6 big tables and 2 small tables

- Scale Factor parameter to control database size
 - SF=1 corresponds to a 1GB database

Courtesy: O'Neil, O'Neil, Chen. Star Schema Benchmark.
Experimental Environment

Red Fox

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel i7-4771 @ 3.50GHz</td>
</tr>
<tr>
<td>GPU</td>
<td>Geforce GTX Titan (2688 cores, $1000 USD)</td>
</tr>
<tr>
<td>PCIe</td>
<td>3.0 x 16</td>
</tr>
<tr>
<td>OS</td>
<td>Ubuntu 12.04</td>
</tr>
<tr>
<td>G++/GCC</td>
<td>4.6</td>
</tr>
<tr>
<td>NVCC</td>
<td>5.5</td>
</tr>
<tr>
<td>Thrust</td>
<td>1.7</td>
</tr>
</tbody>
</table>

LogicBlox 4.0

Amazon EC2 instance cr1.8xlarge
- 32 threads run on 16 cores
- CPU cost - $3000 USD
Red Fox TPC-H (SF=1) Comparison with CPU

>10x Faster with 1/3 Price

On average (geo mean)
- GPU w/ PCIe : Parallel CPU = 11x
- GPU w/o PCIe : Parallel CPU = 15x

This performance is viewed as lower bound - more improvements are coming

Find latest performance and query plans in
Red Fox TPC-H (SF=1) Comparison with CPU

Highest Speedup: string centric queries
- LogicBlox uses string library
- Red Fox re-implements string ops
 - 1 thread manages 1 string
 - Performance depends on string contents
 - Branch/Memory Divergence

Lowest Speedup: poor query plan
Performance of Primitives

Solutions:
• Better order of primitives
• New join algorithms, e.g. hash join, multi-predicate join
• More optimizations, e.g. kernel fusion, better runtime scheduling method
Next Steps: Running Faster, Smarter, Bigger…..

- Running Faster
 - Additional query optimizations
 - Improved RA algorithms
 - Improved run-time load distribution

- Running Smarter:
 - Extension to single node multi-GPU
 - Extension to multi-node multi-GPU

- Running Bigger
 - From in-core to out-of-core processing
The Future is Acceleration

Thank You