
11 Dynamic Translation for EPIC 1 CGO 2010

Dynamic Translation for
EPIC Architectures

David R. Ditzel
Chief Architect for Hybrid Computing, VP IAG

Intel Corporation

Presentation for 8th Workshop on EPIC Architectures
April 24, 2010

Dynamic Translation for EPIC 2 CGO 2010

Thesis: The future of computing
belongs to EPIC Architectures

EPIC:

• Explicitly Parallel Instruction Computer

or

• Exposed Parallelism Instruction Computer

• Parallelism exposed for software to exploit

• Examples – Itanium, GPGPU’s, Transmeta Efficeon/Crusoe

My belief:

• EPIC is a more power efficient approach

• Dynamic translation will improve power advantages

• May be a different EPIC than we know today

Dynamic Translation for EPIC 3 CGO 2010

Power is the limiter

We must move to more
efficient computing structures

or # cores could be limited

Biggest challenge

Dynamic Translation for EPIC 4 CGO 2010

Simple Power Scaling Example

Power = Cdyn x Voltage2 x Frequency + Leakage (33%)

Moore’s Law says # devices can double every node
• 4 cores go to 128 cores over 10 years
• How does power limit this expectation?

With an upper power limit of ~100 Watts, how many cores?

Easy to calculate scaling per node:
• Voltage scaling about 0.9x
• Cdyn scaling about 0.8x
• Assume frequency increase of 1.2x

From this data we can see how many cores we can have
if we do not change to a more efficient approach

Dynamic Translation for EPIC 5 CGO 2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100

Power/core 25

Freq 3.0

Voltage 1.0

Cdyn/Core 5.6

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4

Dynamic Translation for EPIC 6 CGO 2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4

Dynamic Translation for EPIC 7 CGO 2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4

Dynamic Translation for EPIC 8 CGO 2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4 5 7 9 11 14

Dynamic Translation for EPIC 9 CGO 2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4 5 7 9 11 14

We need to improve the efficiency of each core
or we will suffer severe performance reduction

Dynamic Translation for EPIC 10 CGO 2010

So how do we build
improved cores?

Dynamic Translation for EPIC 11 CGO 2010

Change of perspective needed
• Software should be part of the picture

• Hardware co-designed with software increases the available
options

• Software needs a simple model of the “cost” of an instruction
• Out-of-order processors made this impossible

• In-order EPIC processor can provide this simple model

• Software can do a very good job of scheduling, but only if
the scheduling blocks are large enough

• Let’s look at an example of how to increase block size and
improve scheduling

Premise

Dynamic Translation for EPIC 12 CGO 2010

tst.ne p1, ecx, ecx

brc p1, D

or eax, zero, 1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

ld edx, [esp + 112]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or eax, zero, 1

ld r32, [esp + 112]

or ebx, zero, 0

st ebx, [r32]

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E

or eax, zero, 1

ld edx, [esp + 112]

or ebx, zero, 0

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

st ebx, [edx]

Conditional branches tend to have a
very biased program behavior

• Exploitable by compiler

Correctness makes it difficult

• Fixup code for cold exits

• Exceptions

A little special purpose hardware can
make it much easier

Compiler optimization example

or eax, zero, 1

ld edx, [esp + 112]

st ebx, [r32]

tst.ne p1, ecx, ecx

brc p1, F

Dynamic Translation for EPIC 13 CGO 2010

tst.ne p1, ecx, ecx

brc p1, D

or eax, zero, 1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

ld edx, [esp + 112]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or eax, zero, 1

ld r32, [esp + 112]

or ebx, zero, 0

st ebx, [r32]

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E

Hardware executes a region of code
completely or not at all

Common case is fast

Uncommon case rolls back

• Resume in non-specialized code

Hardware atomicity

or eax, zero, 1

ld edx, [esp + 112]

or ebx, zero, 0

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

st ebx, [edx]

Dynamic Translation for EPIC 14 CGO 2010

or eax, zero, 1

ld edx, [esp + 112]

or ebx, zero, 0

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, D

or eax, zero, 1

ld ebx, [ebp]

ld ebx, [ebx + esi*4]

or edx, r32, 0

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or eax, zero, 1

ld r32, [esp + 112]

or ebx, zero, 0

st ebx, [r32]

ld esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E

In
te

rp
re

te
r

R
u
n
ti
m

e

T
ra

n
s
la

ti
o
n
s

Code

Morphing

Software

Dynamic binary translation

x86
processor

x86 ISA

x86 Applications
x86 OS

EPIC
Processor

RISC ISA

test ecx, ecx

jne D

mov eax, 1

mov esi, [esp + 112]

xor ebx,ebx

mov [esi], ebx

mov esi, [ebp + 0x878]

cmp edi, 72

jne E

mov eax, 1

mov ebx, [ebp]

mov ebp, [ebx + esi*4]

mov edx, [esp + 112]

mov [edx], ebx

test ecx,ecx

jne F

Dynamic Translation for EPIC 15 CGO 2010

Up to 6-issue/clock EPIC style architecture

• 2 loads or stores

• 2 integer ALU

• 2 SIMD

• 1 branch/call or other control

Co-designed with CMS

Includes hardware atomicity under software control

• Commit

• Rollback

Efficeon Processor Example

Dynamic Translation for EPIC 16 CGO 2010

Efficeon Hardware Example

Load or

Store or

32-bit add

Load or

Store or

32-bit add

Integer

ALU-1

Integer

ALU-2
Alias Control

FP / SIMD FP / SIMD Branch Exec-1 Exec-2

Each clock, processor can issue from
one to six 32-bit instruction “atoms” to 11 functional units

atom1 atom2 atom3 atom4 atom5 atom6 atom7 atom8

Functional

Units

Instruction

Dynamic Translation for EPIC 17 CGO 2010

No startup cost

Lowest speed

1st Gear
Executes 1 instruction at a time

• Profiles code at runtime

• Gathers data for flow analysis

• Gathers branch frequencies and directions

• Detects load/store typing (IO vs memory)

Filters out infrequently executed code

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance

Dynamic Translation for EPIC 18 CGO 2010

1st Gear 2nd Gear

Uses profile data to create initial translations

after code reaches 1st threshold.

• Translates a “Region” of up to100 x86 instructions.

• Adds flow graph “Shape” information

• Light Optimization

• “Greedy” scheduling

Low translation overhead

Fast execution

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance

Dynamic Translation for EPIC 19 CGO 2010

1st Gear 2nd Gear

Further optimizes the 2nd gear regions

• Common sub-expression elimination

• Memory re-ordering

• Significant code optimization

• Critical path scheduling

Medium translation overhead

Faster execution

3rd Gear

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance

Dynamic Translation for EPIC 20 CGO 2010

1st Gear 2nd Gear

Most advanced optimizations

for “hottest” code regions.

• Splices together multiple regions

• Optimizes across region boundaries

• Used advanced behavioral data

• Critical path scheduling

Highest translation overhead

Fastest execution

3rd Gear 4th Gear

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance

Dynamic Translation for EPIC 21 CGO 2010

Sophisticated translation optimizer

• Quickly applies many optimizations

• if-conversion, loop unrolling, constant folding and
propagation, common-subexpression elimination, dead-
code-elimination, loop-invariant code motion,
superblock scheduling

• New optimizations must have low overhead

CMS Translator Optimization

Dynamic Translation for EPIC 22 CGO 2010

Dynamic opportunities in CMS translation

• Hottest method in Vortex: OaGetObject

Potential to eliminate x86 insts

• 56 -> 47 dynamic x86 insts

• 19% reduction

CMS relies on superblock abstraction

• Does not expose available opportunity

Example from Vortex

same condition

dead store

killed by

partially redundant load

partially redundant load

partially redundant load

partially dead op

store->load forward

Dynamic Translation for EPIC 23 CGO 2010

Atomic regions trivially expose
opportunity

Convert biased control flow into
assert operations
• Represent as dataflow op in IR

• Traditional optimizations can now
exploit speculative opportunity

• Emit as conditional branch to jump
to rollback and recover

Retry in the interpreter or another
translation

Atomic region abstraction

Dynamic Translation for EPIC 24 CGO 2010

Dependence graph shown

Atomic region trivially enables optimizer
to eliminate operations
• 88 -> 73 Efficeon operations

• 17% reduction

Relaxes scheduling constraints
• 26 -> 19 cycles

• 27% reduction

Atomic region benefits

M
E
M

O
R
Y

M
E
M

O
R
Y

IN
T
 A

L
U

IN
T
 A

L
U

B
R
A
N

C
H

Dynamic Translation for EPIC 25 CGO 2010

Why we need EPIC architectures

EPIC architectures offer many advantages

Simplified hardware
• Simpler to design
• Smaller cores means more cores per die

Enables software scheduling
• EPIC architectures are easier for DBT to schedule
• Better scheduling is the key to future performance gains

Power
• In-order pipelines for EPIC are power efficient
• Less hardware for OOO means lower power
• More amenable to new power saving techniques

Dynamic Translation for EPIC 26 CGO 2010

Why we need Dynamic Translation

Good reasons for Dynamic Binary Translation (DBT)

Innovation
• To allow processor innovation not tied to particular instruction sets
• Using DBT to provide backwards compatibility
• DBT system hidden from standard software – CMS as microcode

Performance
• To enable new means to improve processor performance
• DBT can provide access to new performance features

Power
• Dynamic optimization is good for power
• e.g., optimizing away half the instructions is twice as energy efficient

Dynamic Translation for EPIC 27 CGO 2010

Conclusions

Binary Translation with EPIC architectures are a good combination.

Special purpose hardware support is needed, co-designed with software,
in order to provide good performance and power efficiency.

Special care is needed to keep translation overhead low.

Many opportunities for clever hardware/software co-design tradeoffs

This is a technological approach still in its infancy

Prediction: Dynamic Binary Translation will become a basic technique
used in future processor design, as integral as logic gates and
microcode are today.

END OF SLIDES

