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Thesis: The future of computing 
belongs to EPIC Architectures

EPIC: 

• Explicitly Parallel Instruction Computer

or 

• Exposed Parallelism Instruction Computer

• Parallelism exposed for software to exploit

• Examples – Itanium, GPGPU’s, Transmeta Efficeon/Crusoe 

My belief:

• EPIC is a more power efficient approach

• Dynamic translation will improve power advantages

• May be a different EPIC than we know today
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Power is the limiter

We must move to more 
efficient computing structures

or # cores could be limited

Biggest challenge
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Simple Power Scaling Example

Power = Cdyn x Voltage2 x Frequency +  Leakage (33%)

Moore’s Law says # devices can double every node
• 4 cores go to 128 cores over 10 years
• How does power limit this expectation?

With an upper power limit of ~100 Watts, how many cores?

Easy to calculate scaling per node:
• Voltage scaling about 0.9x
• Cdyn scaling about 0.8x
• Assume frequency increase of 1.2x

From this data we can see how many cores we can have
if we do not change to a more efficient approach
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Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100

Power/core 25

Freq 3.0

Voltage 1.0

Cdyn/Core 5.6

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4
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Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4



Dynamic Translation for EPIC                                                7 CGO  2010

Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4
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Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4 5 7 9 11 14
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Power Limits # of Big Cores

Year 2008 2010 2012 2014 2016 2018

Technology Node (nm) 45 32 22 15 11 8

Total Power 100 100 100 100 100 100

Power/core 25 19 15 12 9 7

Freq 3.0 3.6 4.3 5.2 6.2 7.5

Voltage 1.0 0.9 0.8 0.7 0.7 0.6

Cdyn/Core 5.6 4.4 3.6 2.8 2.3 1.8

Expected #Cores 4 8 16 32 64 128

Power Limited #Cores 4 5 7 9 11 14

We need to improve the efficiency of each core
or we will suffer severe performance reduction
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So how do we build 
improved cores?
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Change of perspective needed
• Software should be part of the picture

• Hardware co-designed with software increases the available 
options

• Software needs a simple model of the “cost” of an instruction
• Out-of-order processors made this impossible

• In-order EPIC processor can provide this simple model

• Software can do a very good job of scheduling, but only if 
the scheduling blocks are large enough

• Let’s look at an example of how to increase block size and 
improve scheduling

Premise
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tst.ne p1, ecx, ecx

brc p1, D

or     eax, zero, 1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

ld     edx, [esp + 112]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or     eax, zero, 1

ld     r32, [esp + 112]

or     ebx, zero, 0

st ebx, [r32]

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E

or     eax, zero, 1

ld     edx, [esp + 112]

or     ebx, zero, 0

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

st ebx, [edx]

Conditional branches tend to have a 
very biased program behavior

• Exploitable by compiler

Correctness makes it difficult

• Fixup code for cold exits

• Exceptions

A little special purpose hardware can 
make it much easier

Compiler optimization example

or     eax, zero, 1

ld     edx, [esp + 112]

st ebx, [r32]

tst.ne p1, ecx, ecx

brc p1, F
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tst.ne p1, ecx, ecx

brc p1, D

or     eax, zero, 1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

ld     edx, [esp + 112]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or     eax, zero, 1

ld     r32, [esp + 112]

or     ebx, zero, 0

st ebx, [r32]

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E

Hardware executes a region of code 
completely or not at all

Common case is fast

Uncommon case rolls back

• Resume in non-specialized code

Hardware atomicity

or     eax, zero, 1

ld     edx, [esp + 112]

or     ebx, zero, 0

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

st ebx, [edx]
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or     eax, zero, 1

ld     edx, [esp + 112]

or     ebx, zero, 0

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

assert ~p1

tst.ne p1, ecx, ecx

assert ~p1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, D

or     eax, zero, 1

ld     ebx, [ebp]

ld     ebx, [ebx + esi*4]

or     edx, r32, 0

st ebx, [edx]

tst.ne p1, ecx, ecx

brc p1, F

or     eax, zero, 1

ld     r32, [esp + 112]

or     ebx, zero, 0

st ebx, [r32]

ld     esi, [ebp + 0x878]

cmp.ne p1 edi, 72

brc p1, E
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test   ecx, ecx

jne D  

mov eax, 1

mov esi, [esp + 112]

xor ebx,ebx

mov [esi], ebx

mov esi, [ebp + 0x878]

cmp edi, 72

jne E

mov eax, 1

mov ebx, [ebp]

mov ebp, [ebx + esi*4]

mov edx, [esp + 112]     

mov [edx], ebx

test   ecx,ecx

jne F
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Up to 6-issue/clock EPIC style architecture

• 2 loads or stores

• 2 integer ALU

• 2 SIMD

• 1 branch/call or other control

Co-designed with CMS

Includes hardware atomicity under software control

• Commit

• Rollback

Efficeon Processor Example
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Efficeon Hardware Example

Load or

Store or

32-bit add

Load or

Store or

32-bit add

Integer 

ALU-1

Integer 

ALU-2
Alias Control

FP / SIMD FP / SIMD Branch Exec-1 Exec-2

Each clock, processor can issue from 
one to six 32-bit instruction “atoms” to 11 functional units 

atom1        atom2        atom3        atom4        atom5       atom6        atom7         atom8

Functional

Units

Instruction
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No startup cost

Lowest speed

1st Gear
Executes 1 instruction at a time

• Profiles code at runtime

• Gathers data for flow analysis

• Gathers branch frequencies and directions

• Detects load/store typing (IO vs memory)

Filters out infrequently executed code

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance
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1st Gear 2nd Gear

Uses profile data to create initial translations 

after code reaches 1st threshold.

• Translates a “Region” of up to100 x86 instructions.

• Adds flow graph “Shape” information

• Light Optimization

• “Greedy” scheduling

Low translation overhead

Fast execution

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance



Dynamic Translation for EPIC                                                19 CGO  2010

1st Gear 2nd Gear

Further optimizes the 2nd gear regions

• Common sub-expression elimination

• Memory re-ordering

• Significant code optimization

• Critical path scheduling

Medium translation overhead

Faster execution

3rd Gear

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance
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1st Gear 2nd Gear

Most advanced optimizations 

for “hottest” code regions.

• Splices together multiple regions

• Optimizes across region boundaries

• Used advanced behavioral data

• Critical path scheduling

Highest translation overhead

Fastest execution

3rd Gear 4th Gear

Code Morphing Software
4 Gear System Significantly Improved Responsiveness and Overall Performance



Dynamic Translation for EPIC                                                21 CGO  2010

Sophisticated translation optimizer

• Quickly applies many optimizations

• if-conversion, loop unrolling, constant folding and 
propagation, common-subexpression elimination, dead-
code-elimination, loop-invariant code motion, 
superblock scheduling

• New optimizations must have low overhead

CMS Translator Optimization
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Dynamic opportunities in CMS translation

• Hottest method in Vortex: OaGetObject

Potential to eliminate x86 insts

• 56 -> 47 dynamic x86 insts

• 19% reduction

CMS relies on superblock abstraction

• Does not expose available opportunity 

Example from Vortex

same condition

dead store

killed by

partially redundant load

partially redundant load

partially redundant load

partially dead op

store->load forward
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Atomic regions trivially expose 
opportunity

Convert biased control flow into 
assert operations
• Represent as dataflow op in IR

• Traditional optimizations can now 
exploit speculative opportunity

• Emit as conditional branch to jump 
to rollback and recover

Retry in the interpreter or another 
translation

Atomic region abstraction
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Dependence graph shown

Atomic region trivially enables optimizer 
to eliminate operations
• 88 -> 73 Efficeon operations

• 17% reduction

Relaxes scheduling constraints
• 26 -> 19 cycles

• 27% reduction

Atomic region benefits
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Why we need EPIC architectures

EPIC architectures offer many advantages

Simplified hardware
• Simpler to design
• Smaller cores means more cores per die

Enables software scheduling
• EPIC architectures are easier for DBT to schedule
• Better scheduling is the key to future performance gains

Power
• In-order pipelines for EPIC are power efficient
• Less hardware for OOO means lower power
• More amenable to new power saving techniques
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Why we need Dynamic Translation

Good reasons for Dynamic Binary Translation (DBT)

Innovation
• To allow processor innovation not tied to particular instruction sets
• Using DBT to provide backwards compatibility
• DBT system hidden from standard software – CMS as microcode

Performance
• To enable new means to improve processor performance
• DBT can provide access to new performance features

Power
• Dynamic optimization is good for power
• e.g., optimizing away half the instructions is twice as energy efficient
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Conclusions

Binary Translation with EPIC architectures are a good combination.

Special purpose hardware support is needed, co-designed with software,
in order to provide good performance and power efficiency.

Special care is needed to keep translation overhead low.

Many opportunities for clever hardware/software co-design tradeoffs

This is a technological approach still in its infancy

Prediction: Dynamic Binary Translation will become a basic technique 
used in future processor design, as integral as logic gates and
microcode are today.
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