
A Cross-Architectural
Interface for Code

Cache Manipulation

Kim Hazelwood and Robert Cohn

1 Hazelwood and Cohn, CGO 2006

Software-Managed Code Caches

• Software-managed code caches store transformed code
at run time to amortize overhead of dynamic optimizers

• Contain a (potentially altered) copy of application code

Application

Transform

Code
Cache

Execute

Profile

2 Hazelwood and Cohn, CGO 2006

Code Cache Contents

Every application instruction executed is stored in
the code cache (at least)

Code Regions

• Altered copies of application code

• Basic blocks and/or traces

Exit stubs

• Swap application⇔VM state

• Return control to the dynamic optimizer

3 Hazelwood and Cohn, CGO 2006

Code Regions

Basic Blocks

Traces

A
BBL A:
Inst1
Inst2
Inst3
Branch B

C

A

B

D

CFG

A
B
C
D

In Memory

A
B C

D
D

Trace

4 Hazelwood and Cohn, CGO 2006

Exit Stubs

One exit stub exists for every exit from every trace
or basic block

Functionality

Prepare for context switch

Return control to VM dispatch

Details

Each exit stub ≈ 3 instructions

A
B
D Exit to C

Exit to E

5 Hazelwood and Cohn, CGO 2006

Pretend as though the original program is executing

Original Code:
0x1000 call 0x4000

A Goal of the Code Cache: Transparency

Code cache address mapping:

0x1000 → 0x7000 “caller”

0x4000 → 0x8000 “callee”

Translated Code:
0x7000 push 0x1006
0x7006 jmp 0x8000

Push 0x1006 on stack,
then jump to 0x4000

SPC TPC

6 Hazelwood and Cohn, CGO 2006

A Challenge and an Opportunity

Challenges

• Code caches hold the key to overall performance
Self-modifying code
Unloaded libraries
Bounded sizes

Opportunities

• Ephemeral instrumentation

• Adaptive optimizations

• Security

7 Hazelwood and Cohn, CGO 2006

Interesting Research Problems, but…

• Most systems hide all evidence of code caches

• Investigations have required source code access

• Code cache implementations are often tightly
coupled to the rest of the system in subtle ways

Direct code cache access can be a powerful
opportunity!

8 Hazelwood and Cohn, CGO 2006

The Code Cache API

• We provide a clean, robust interface for accessing
and altering code cache behavior and contents

ATOM-style interface
Rapid prototyping

• Users can
Investigate code cache design decisions
Investigate applications of binary modifiers

• Built upon the Pin dynamic instrumentation system

9 Hazelwood and Cohn, CGO 2006

Building upon Pin

• A dynamic instrumentation system from Intel

• Multiple platform support
– Four ISAs – IA32, EM64T, IPF, ARM
– Four OSes – Linux, Windows, FreeBSD, MacOS

• Robust and stable (Pin can run itself!)
– 12+ active developers
– Nightly testing of 12 configurations on 25000 binaries
– Automatic generation of user manuals
– Large user base in academia and industry
– Pinheads mailing list

• Seamless interaction with instrumentation interface

10 Hazelwood and Cohn, CGO 2006

Pin’s Code Cache

Trace 1

Trace 2

Exit 1a
Exit 1b
Exit 2a

Cache Block 1

Trace M

Exit (M)a

…

…

Trace M+1

Trace M+2

Exit (M+1)a
Exit (M+1)b
Exit (M+2)a

Trace N

Exit (N)a

Cache Block 2

…

…

Trace N+1

Trace N+2

Exit (N+1)a
Exit (N+1)b
Exit (N+2)a

Cache Block J

…

Next trace

Next stub

11 Hazelwood and Cohn, CGO 2006

Cache Linking

Trace #2

Exit #1a
Exit #1b

Trace #1

Dispatch

Trace #3

12 Hazelwood and Cohn, CGO 2006

Cache Client Interface

JIT
Compiler

Emulation Unit D
is

pa
tc

he
r

Virtual Machine (VM)

Code
Cache

Cache Client APIs

A
pp

lic
at

io
n

Operating System
Hardware

Pin
Code Cache

Plug-ins

Address Space

13 Hazelwood and Cohn, CGO 2006

Code Cache API

Callbacks – Events that trigger calls to user functions
CacheIsFull, TraceInserted, EnteringCache, TraceLinked,
BlockCreated, …

Actions – Events a user can invoke via
instrumentation

ChangeCacheSize(Sz), FlushCache(), FlushBlock(Id),
InvalidateTrace(SPC)…

Lookups – Returns IDs, mappings, handles for
traces, exit stubs, cache blocks, …

Statistics – Live summary of cache contents
MemoryUsed, FlushCount, TracesInCache, CacheBlockCount,
…

14 Hazelwood and Cohn, CGO 2006

Our Design Goals

• Ease of use
• Comparable performance to a direct implementation

Major instrumentation overhead source

• “State switch” between executing application and
instrumentation code

Fundamental difference
• Nearly all callbacks occur from the VM (no state switch)
• All others would incur the same state switch overhead
in a direct implementation…

15 Hazelwood and Cohn, CGO 2006

Overhead of Empty Routines

0%

100%

200%

300%

400%

500%

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

R
el

at
iv

e
Pe

rf
or

m
an

ce

PinNative
All Callbacks
Flush Only
Cache Enter
Trace Link
Trace Insert

16 Hazelwood and Cohn, CGO 2006

Code Cache API Utility

Code Cache Design

• Cache replacement investigations

• Graphical visualization

• Architectural comparisons
– IA-32, EM64T, Itanium, XScale

Code Cache Applications

• Optimization algorithms

• Security algorithms

17 Hazelwood and Cohn, CGO 2006

Cache Replacement

void main(int argc, char **argv) {
PIN_Init(argc,argv);
CODECACHE_CacheIsFull(FlushOnFull);
PIN_StartProgram(); //Never returns

}

void FlushOnFull() {

CODECACHE_FlushCache();
cout << “SWOOSH!” << endl;

}

Eviction Granularities
• Entire Cache
• One Cache Block
• One Trace
• Address Range

% pin –cache_size 40960 –t flusher -- /bin/ls
SWOOSH!
SWOOSH!
<output of /bin/ls>

18 Hazelwood and Cohn, CGO 2006

A Graphical Front-End

19 Hazelwood and Cohn, CGO 2006

Predicate regsNoneCond. codesPredication

Stacked
registers

Stack/registersRegistersParameters

PostIndex/offset/
scale/iprel

Pre/post/iprel
increment

Addressing
modes

BundledVariable length,
prefixes

Fixed lengthInstruction

LD/STAny, implicitLD/STMemory
Instruction

FixedVariable lengthFixedMemory op size

VLIWCISCRISCType

IPFIA-32/EM64TARM

Design Challenge: ISA Idiosyncrasies

20 Hazelwood and Cohn, CGO 2006

Architectural Comparisons

1.0 1.0 1.0 1.0

2.6

1.9
2.2

0.6
0.9

0.5 0.6

1.8

3.8

0.80.7 0.8

0

1

2

3

4

CacheSize
(Bytes)

Traces
(Count)

ExitStubs
(Count)

Links (Count)

R
el

at
iv

e
to

 IA
32

IA32 EM64T IPF Xscale

21 Hazelwood and Cohn, CGO 2006

Architectural Comparisons (2)

17.2

3.9
2.3

19.5

4.5

2.1

58.1

6.4

2.5

15.2

2.5
1.8

Instructions Per Trace Basic Blocks Per Trace Links Per Trace

U
ni

ts
 P

er
 T

ra
ce

 (l
og

 s
ca

le
)

IA32 EM64T IPF Xscale

22 Hazelwood and Cohn, CGO 2006

Design Challenge: Self-Modifying Code

The problem

Code cache must detect SMC and invalidate
corresponding cached traces

Solutions

Many proposed … but source code is usually
necessary to investigate solutions

23 Hazelwood and Cohn, CGO 2006

Self-Modifying Code Handler

void main (int argc, char **argv) {
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(InsertSmcCheck,0);
PIN_StartProgram(); // Never returns

}
void InsertSmcCheck () {

. . . (variable declarations) . . .
memcpy(traceCopyAddr, traceAddr, traceSize);
TRACE_InsertCall(trace, IPOINT_BEFORE, (AFUNPTR)DoSmcCheck,

IARG_PTR, traceAddr, IARG_PTR, traceCopyAddr,
IARG_UINT32, traceSize, IARG_CONTEXT, IARG_END);

}
void DoSmcCheck (VOID* traceAddr, VOID *traceCopyAddr,

USIZE traceSize, CONTEXT* ctxP) {
if (memcmp(traceAddr, traceCopyAddr, traceSize) != 0) {

CODECACHE_InvalidateTrace((ADDRINT)traceAddr);
PIN_ExecuteAt(ctxP);

}
} (Written by Alex Skaletsky)

24 Hazelwood and Cohn, CGO 2006

Adaptive Code Optimizations

Many reasons to selectively invalidate cached traces

• Ephemeral profiling

• Phase-based optimizations

• Adaptive algorithms

25 Hazelwood and Cohn, CGO 2006

Two-Phase Instrumentation

0

1

2

3

4

5

6

7

am
m

p
ap

pl
u

ap
si

ar

t
bz

ip
2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d
ga

lg
el

ga

p
gc

c
gz

ip

lu
ca

s
m

cf

m
es

a
m

gr
id

pe

rlb
m

k
si

xt
ra

ck

sw
im

tw

ol
f

vo
rte

x
vp

r
w

up
w

is
e

av
er

ag
e

Sp
ee

du
p

• Memory reference instrumentation can be costly

• Can invalidate instrumented code after N executions

(N = 100)

26 Hazelwood and Cohn, CGO 2006

Plug-In Tools Shipped with our API

CacheSimulator – Exercises most of the API

CacheFlusher – Performs a full cache flush

CacheDoubler – Doubles cache size when full

LinkUnlink – Watches all link activity

BBTest – User-defined trace sizing

TraceInvalidator – Invalidates hot traces

SMCHandler – Stores a copy of program
instructions and invalidates stale code

. . . and several more . . .

27 Hazelwood and Cohn, CGO 2006

Summary

• Low overhead but highly functional interface to
Pin’s code cache

• Enables introspection as well as adjustment of
cache policies and contents

• One API → four ISAs → four OSes

• Works seamlessly with Pin’s instrumentation API

• Download it today!

http://rogue.colorado.edu/pin

