
A Cross-Architectural 
Interface for Code 

Cache Manipulation

Kim Hazelwood and Robert Cohn



1 Hazelwood and Cohn,  CGO 2006

Software-Managed Code Caches

• Software-managed code caches store transformed code
at run time to amortize overhead of dynamic optimizers

• Contain a (potentially altered) copy of application code

Application

Transform

Code
Cache

Execute

Profile
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Code Cache Contents

Every application instruction executed is stored in 
the code cache (at least)

Code Regions

• Altered copies of application code

• Basic blocks and/or traces

Exit stubs

• Swap application⇔VM state

• Return control to the dynamic optimizer
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Code Regions
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Exit Stubs

One exit stub exists for every exit from every trace 
or basic block

Functionality

Prepare for context switch

Return control to VM dispatch

Details

Each exit stub ≈ 3 instructions

A
B
D Exit to C

Exit to E
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Pretend as though the original program is executing

Original Code:
0x1000 call 0x4000

A Goal of the Code Cache: Transparency

Code cache address mapping:

0x1000 → 0x7000     “caller”

0x4000 → 0x8000     “callee”

Translated Code:
0x7000 push 0x1006
0x7006 jmp 0x8000

Push 0x1006 on stack, 
then jump to 0x4000

SPC TPC
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A Challenge and an Opportunity

Challenges

• Code caches hold the key to overall performance
Self-modifying code
Unloaded libraries
Bounded sizes

Opportunities

• Ephemeral instrumentation

• Adaptive optimizations

• Security
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Interesting Research Problems, but…

• Most systems hide all evidence of code caches

• Investigations have required source code access

• Code cache implementations are often tightly 
coupled to the rest of the system in subtle ways

Direct code cache access can be a powerful 
opportunity!
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The Code Cache API

• We provide a clean, robust interface for accessing 
and altering code cache behavior and contents

ATOM-style interface
Rapid prototyping

• Users can
Investigate code cache design decisions
Investigate applications of binary modifiers

• Built upon the Pin dynamic instrumentation system
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Building upon Pin

• A dynamic instrumentation system from Intel

• Multiple platform support
– Four ISAs – IA32, EM64T, IPF, ARM
– Four OSes – Linux, Windows, FreeBSD, MacOS

• Robust and stable (Pin can run itself!)
– 12+ active developers
– Nightly testing of 12 configurations on 25000 binaries
– Automatic generation of user manuals
– Large user base in academia and industry 
– Pinheads mailing list

• Seamless interaction with instrumentation interface
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Pin’s Code Cache
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Cache Linking

Trace #2

Exit #1a
Exit #1b

Trace #1

Dispatch

Trace #3



12 Hazelwood and Cohn,  CGO 2006

Cache Client Interface
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Code Cache API

Callbacks – Events that trigger calls to user functions
CacheIsFull, TraceInserted, EnteringCache, TraceLinked, 
BlockCreated, …

Actions – Events a user can invoke via 
instrumentation 

ChangeCacheSize(Sz), FlushCache(), FlushBlock(Id),  
InvalidateTrace(SPC)…

Lookups – Returns IDs, mappings, handles for 
traces, exit stubs, cache blocks, …

Statistics – Live summary of cache contents
MemoryUsed, FlushCount, TracesInCache, CacheBlockCount, 
…
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Our Design Goals

• Ease of use 
• Comparable performance to a direct implementation 

Major instrumentation overhead source

• “State switch” between executing application and 
instrumentation code

Fundamental difference
• Nearly all callbacks occur from the VM (no state switch)
• All others would incur the same state switch overhead 
in a direct implementation…
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Overhead of Empty Routines

0%

100%

200%

300%

400%

500%

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

R
el

at
iv

e 
Pe

rf
or

m
an

ce

PinNative
All Callbacks
Flush Only
Cache Enter
Trace Link
Trace Insert



16 Hazelwood and Cohn,  CGO 2006

Code Cache API Utility

Code Cache Design

• Cache replacement investigations 

• Graphical visualization

• Architectural comparisons
– IA-32, EM64T, Itanium, XScale

Code Cache Applications

• Optimization algorithms

• Security algorithms
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Cache Replacement

void main(int argc, char **argv) {
PIN_Init(argc,argv);
CODECACHE_CacheIsFull(FlushOnFull);
PIN_StartProgram(); //Never returns

}

void FlushOnFull() {

CODECACHE_FlushCache();
cout << “SWOOSH!” << endl;

}

Eviction Granularities
• Entire Cache
• One Cache Block
• One Trace
• Address Range

% pin –cache_size 40960 –t flusher -- /bin/ls
SWOOSH!
SWOOSH!
<output of /bin/ls>
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A Graphical Front-End
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Predicate regsNoneCond. codesPredication

Stacked 
registers

Stack/registersRegistersParameters

PostIndex/offset/ 
scale/iprel

Pre/post/iprel
increment

Addressing 
modes

BundledVariable length, 
prefixes

Fixed lengthInstruction

LD/STAny, implicitLD/STMemory 
Instruction

FixedVariable lengthFixedMemory op size

VLIWCISCRISCType

IPFIA-32/EM64TARM

Design Challenge: ISA Idiosyncrasies
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Architectural Comparisons
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Architectural Comparisons (2)
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Design Challenge: Self-Modifying Code

The problem

Code cache must detect SMC and invalidate 
corresponding cached traces

Solutions

Many proposed … but source code is usually 
necessary to investigate solutions
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Self-Modifying Code Handler

void main (int argc, char **argv) {
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(InsertSmcCheck,0);
PIN_StartProgram(); // Never returns

}
void InsertSmcCheck () {

. . . (variable declarations) . . .
memcpy(traceCopyAddr, traceAddr, traceSize);
TRACE_InsertCall(trace, IPOINT_BEFORE, (AFUNPTR)DoSmcCheck, 

IARG_PTR, traceAddr, IARG_PTR, traceCopyAddr, 
IARG_UINT32, traceSize, IARG_CONTEXT, IARG_END);

}
void DoSmcCheck (VOID* traceAddr, VOID *traceCopyAddr, 

USIZE traceSize, CONTEXT* ctxP) {
if (memcmp(traceAddr, traceCopyAddr, traceSize) != 0) {

CODECACHE_InvalidateTrace((ADDRINT)traceAddr);
PIN_ExecuteAt(ctxP);

}
} (Written by Alex Skaletsky)
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Adaptive Code Optimizations

Many reasons to selectively invalidate cached traces

• Ephemeral profiling

• Phase-based optimizations

• Adaptive algorithms
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Two-Phase Instrumentation
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• Memory reference instrumentation can be costly

• Can invalidate instrumented code after N executions

(N = 100)
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Plug-In Tools Shipped with our API

CacheSimulator – Exercises most of the API

CacheFlusher – Performs a full cache flush

CacheDoubler – Doubles cache size when full

LinkUnlink – Watches all link activity

BBTest – User-defined trace sizing

TraceInvalidator – Invalidates hot traces

SMCHandler – Stores a copy of program 
instructions and invalidates stale code

. . .  and several more . . .
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Summary

• Low overhead but highly functional interface to 
Pin’s code cache

• Enables introspection as well as adjustment of 
cache policies and contents

• One API → four ISAs → four OSes

• Works seamlessly with Pin’s instrumentation API

• Download it today! 

http://rogue.colorado.edu/pin


