
Multicores from the
Compiler's Perspective

A Blessing or a Curse?

Saman Amarasinghe
Associate Professor, Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

CTO, Determina Inc.

AMD Opteron
Dual Core

Intel Montecito
1.7 Billion transistors

Dual Core IA/64
Intel Tanglewood
Dual Core IA/64

Intel Pentium Extreme
3.2GHz Dual Core

Intel Tejas & Jayhawk
Unicore (4GHz P4)

Intel Dempsey
Dual Core Xeon

Intel Pentium D
(Smithfield)

Cancelled

Intel Yonah
Dual Core Mobile

IBM Power 6
Dual Core

IBM Power 4 and 5
Dual Cores Since 2001

IBM Cell
Scalable Multicore

Sun Olympus and Niagara
8 Processor Cores

MIT Raw
16 Cores

Since 2002

… 1H 2005 1H 2006 2H 20062H 20052H 2004

Multicores are coming!

What is Multicore?

Multiple, externally visible processors on a
single die where the processors have
independent control-flow, separate internal
state and no critical resource sharing.

Multicores have many names…
Chip Multiprocessor (CMP)
Tiled Processor
….

Why move to Multicores?

Many issues with scaling a unicore
Power
Efficiency
Complexity
Wire Delay
Diminishing returns from optimizing
a single instruction stream

Moore’s Law
20051985 199019801970 1975 1995 2000

4004
8008

8086

8080

286
386

486
Pentium

P2
P3

P4

Itanium
Itanium 2

transistors
1,000,000,000

100,000

10,000

1,000

1,000,000

10,000,000

100,000,000

4004 (12mm2 / 8µ)

Pentium 4 (217mm2 / .18µ)

Bus
Control

L2 Data
Cache

L2 Data
CacheµOp Scheduling

R
en

am
in

g

Trace
Cache

Decode Fetch

In
te

ge
r

C
or

e

FPU
MMX/SSE

Moore’s Law:
Transistors Well Spent?

Itanium 2 (421mm2 / .18µ)

Integer Core
Floating Point

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

Impact of Multicores

How does going from Multiprocessors to
Multicores impact programs?

What changed?

Where is the Impact?
Communication Bandwidth
Communication Latency

Communication Bandwidth
How much data can be communicated
between two cores?

What changed?
Number of Wires

IO is the true bottleneck
On-chip wire density is very high

Clock rate
IO is slower than on-chip

Multiplexing
No sharing of pins

Impact on programming model?
Massive data exchange is possible
Data movement is not the bottleneck

locality is not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X

Communication Latency
How long does it take for a round
trip communication?

What changed?
Length of wire

Very short wires are faster
Pipeline stages

No multiplexing
On-chip is much closer

Impact on programming model?
Ultra-fast synchronization
Can run real-time apps
on multiple cores

50X

~200 Cycles ~4 cycles

Past, Present and the Future?

PE PE

$$ $$

Memory

PE PE

$$

Memory

$$

PE

$$ X

PE

$$ X

PE

$$ X

PE

$$ X

MemoryMemory

M
em

or
y

M
em

or
y

Basic Multicore
IBM Power5

Traditional
Multiprocessor

Integrated Multicore
16 Tile MIT Raw

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

When is a compiler successful as
a general purpose tool?

General Purpose
Programs compiled with the compiler
are in daily use by non-expert users
Used by many programmers
Used in open source and commercial
settings

Research / niche
You know the names of all the users

Success Criteria

1. Effective
2. Stable
3. General
4. Scalable
5. Simple

1: Effective

Good performance improvements on most
programs

The speedup graph goes here!

2: Stable

Simple change in the program should not
drastically change the performance!

Otherwise need to understand the compiler
inside-out
Programmers want to treat the compiler as a
black box

3: General
Support the diversity of programs

Support Real Languages: C, C++, (Java)
Handle rich control and data structures
Tolerate aliasing of pointers

Support Real Environments
Separate compilation
Statically and dynamically linked libraries

Work beyond an ideal laboratory setting

4: Scalable
Real applications are large!

Algorithm should scale
polynomial or exponential in the program size doesn’t work

Real Programs are Dynamic
Dynamically loaded libraries
Dynamically generated code

Whole program analysis tractable?

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Li
ne

s
of

 C
od

e

SPEC2000, Mediabench Benchmarks
Linux components
Windows OS

5: Simple
Aggressive analysis and complex transformation lead to:

Buggy compilers!
Programmers want to trust their compiler!
How do you manage a software project when the compiler is broken?

Long time to develop

Simple compiler ⇒ fast compile-times
Current compilers are too complex!

~ 300,000StreamIt

~ 800,000Trimaran

~3.5 millionOpen Research Compiler

~ 250,000SUIF

~ 1.2 millionGNU GCC

Lines of CodeCompiler

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

Data Level Parallelism
Identify loops where each
iteration can run in parallel

DOALL parallelism

What affects performance?
Parallelism Coverage
Granularity of Parallelism
Data Locality

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors

TI
M

E

Parallelism Coverage
Amdahl’s Law
Performance improvement to be
gained from faster mode of execution
is limited by the fraction of the time
the faster mode can be used

Find more parallelism
Interprocedural analysis
Alias analysis
Data-flow analysis
……

processors

More
processors

SUIF Parallelizer Results

0

20

40

60

80

100

1 2 3 4 5 6 7 8Pa
ra

lle
lis

m
 C

ov
er

ag
e

S p e e d u p

SPEC95fp, SPEC92fp, Nas, Perfect Benchmark Suites
On a 8 processor Silicon Graphics Challenge (200MHz MIPS R4000)

Granularity of Parallelism
Synchronization is expensive

Need to find very large
parallel regions
coarse-grain loop nests

Heroic analysis required

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors

TI
M

E

Granularity of Parallelism
Synchronization is expensive

Need to find very large
parallel regions
coarse-grain loop nests

Heroic analysis required

Single unanalyzable line

turb3d in SPEC95fp

Granularity of Parallelism
Synchronization is expensive

Need to find very large
parallel regions
coarse-grain loop nests

Heroic analysis required

Single unanalyzable line
Small Reduction in Coverage
Drastic Reduction in Granularity

turb3d in SPEC95fp

SUIF Parallelizer Results

1

10

100

1000

10000

0

20

40

60

80

100

1 2 3 4 5 6 7 8Pa
ra

lle
lis

m
 C

ov
er

ag
e

G
ra

nu
la

rit
y

of
 P

ar
al

le
lis

m S p e e d u p

Data Locality

Non-local data
Stalls due to latency
Serialize when lack of
bandwidth

Data Transformations
Global impact
Whole program analysis

A[0]
A[4]
A[8]
A[12]

A[1]
A[5]
A[9]
A[13]

A[2]
A[6]
A[10]
A[14]

A[3]
A[7]
A[11]
A[15]

DLP on Multiprocessors:
Current State

Huge body of work over the years.
Vectorization in the ’80s
High Performance Computing in ’90s

Commercial DLP compilers exist
But…only a very small user community

Can multicores make DLP
mainstream?

?

Effectiveness

Main Issue
Parallelism Coverage

Compiling to Multiprocessors
Amdahl’s law

Many programs have no loop-level parallelism

Compiling to Multicores
Nothing much has changed

Stability

Main Issue
Granularity of Parallelism

Compiling for Multiprocessors
Unpredictable, drastic granularity changes reduce the
stability

Compiling for Multicores
Low latency granularity is less important

Generality
Main Issue

Changes in general purpose programming styles over time
impacts compilation

Compiling for Multiprocessors (In the good old days)
Mainly FORTRAN

Loop nests and Arrays

Compiling for Multicores
Modern languages/programs are hard to analyze

Aliasing (C, C++ and Java)
Complex structures (lists, sets, trees)
Complex control (concurrency, recursion)
Dynamic (DLLs, Dynamically generated code)

Scalability

Main Issue
Whole program analysis and global transformations don’t
scale

Compiling for Multiprocessors
Interprocedural analysis needed to improve granularity
Most data transformations have global impact

Compiling for Multicores
High bandwidth and low latency no data transformations
Low latency granularity improvements not important

Simplicity

Main Issue
Parallelizing compilers are exceedingly complex

Compiling for Multiprocessors
Heroic interprocedural analysis and global transformations
are required because of high latency and low bandwidth

Compiling for Multicores
Hardware is a lot more forgiving…
But…modern languages and programs make life difficult

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

Instruction Level parallelism
on a Unicore

tmp0 = (seed*3+2)/2
tmp1 = seed*v1+2
tmp2 = seed*v2 + 2
tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
v3 = tmp3 - v2

Programs have ILP
Modern processors extract the ILP

Superscalars Hardware
VLIW Compiler

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

Bypass
Network

Re
gi

st
er

 F
ile

Scalar Operand Network (SON)

• Moves results of an operation
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?

pval5=seed.0*6.0

seed.0=seed

Scalar Operand Network (SON)

• Moves results of an operation
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to

consumer

pval5=seed.0*6.0

seed.0=seed

pval5=seed.0*6.0

seed.0=seed

Scalar Operand Network (SON)

• Moves results of an operation
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to

consumer

• Low occupancy at the producer
and consumer

pval5=seed.0*6.0

seed.0=seed

Test lock
Branch
Test lock
Branch
Test lock
Branch
Test lock
Branch
Read memory
pval5=seed.0*6.0

seed.0=seed
lock
Write mem
unlock

Scalar Operand Network (SON)

• Moves results of an operation
to dependent instructions

• Superscalars in Hardware

• What makes a good SON?
• Low latency from producer to

consumer

• Low occupancy at the producer
and consumer

• High bandwidth for multiple
operations

pval5=seed.0*6.0

seed.0=seed

pval5=seed.0*6.0

seed.0=seed

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3pval7=tmp1.3+tmp2.5

Is an Integrated Multcore Reedy to be
a Scalar Operand Network?

Basic
Multicore

Traditional
Multiprocessor

Integrated
Multicore

VLIW
Unicore

001050
Occupancy
(instructions)

61621Bandwidth
(operands/cycle)

03460
Latency
(cycles)

Scalable Scalar Operand
Network?

Unicores
N2 connectivity
Need to cluster
introduces latency

Integrated Multicores
No bottlenecks in scaling

Integrated
Multicore Unicore

Compiler Support for
Instruction Level Parallelism

Accepted general
purpose technique

Enhance the
performance of
superscalars
Essential for VLIW

Instruction Scheduling
List scheduling or
Software pipelining

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

seed.0=recv()
pval5=seed.0*6.0

pval4=pval5+2.0
tmp3.6=pval4/3.0

tmp3=tmp3.6
v2.7=recv()
v3.10=tmp3.6-v2.7

v3=v3.10

seed.0=recv()
pval2=seed.0*v1.2

tmp1.3=pval2+2.0

send(tmp1.3)
tmp1=tmp1.3
tmp2.5=recv()
pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8
v0=v0.9

tmp0.1=recv()

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

tmp0.1=recv()

ILP on Integrated Multicores:
Space-Time Instruction Scheduling

seed.0=recv()
pval5=seed.0*6.0

pval4=pval5+2.0
tmp3.6=pval4/3.0

tmp3=tmp3.6

v2.7=recv()
v3.10=tmp3.6-v2.7

v3=v3.10

route(W,t)

route(W,S)

route(S,t)

send(seed.0)
pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

send(tmp0.1)
tmp0=tmp0.1

route(t,E)

route(t,E)

v2.4=v2

seed.0=recv(0)
pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5
send(tmp2.5)

tmp1.3=recv()
pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

Send(v2.7)
v2=v2.7

route(N,t)

route(t,E)

route(E,t)

route(t,E)

v1.2=v1

seed.0=recv()
pval2=seed.0*v1.2

tmp1.3=pval2+2.0

send(tmp1.3)
tmp1=tmp1.3

tmp2.5=recv()
pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8

v0.9=tmp0.1-v1.8

v0=v0.9

route(N,t)

route(N,t)

route(W,N)

seed.0=seed

route(W,S)

route(W,S)

tmp0.1=recv()

route(t,W)

route(W,t)

route(W,N)

route(t,E)

Partition, placement, route
and schedule
Similar to Clustered VLIW

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

Handling Control Flow

Asynchronous global branching
Propagate the branch condition to all the tiles
as part of the basic block schedule
When finished with the basic block execution
asynchronously switch to another basic block
schedule depending on the branch condition

• • •
• • •
br x

x = cmp a, b
• • •
• • •
br x • • •

br x
• • •
• • •
br x

Raw Performance

0

4

8

12

16

20

24

28

32

C
ho

le
sk

y

M
xm

To
m

ca
tv

Vp
en

ta

Bt
rix Li
fe

Ja
co

bi

Ad
pc

m
-e

nc
od

e

SH
A

M
PE

G
-k

er
ne

l

M
ol

dy
n

U
ns

tru
ct

Sp
ee

du
p

• 32 tile Raw

Dense Matrix Multimedia Irregular

Success Criteria

1. Effective
If ILP exists same

2. Stable
Localized optimization similar

3. General
Applies to same type of applications

4. Scalable
Local analysis similar

5. Simple
Deeper analysis and more transformations

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

Languages are out-of-touch with
Architecture

Modern
architecture

• Two choices:
• Develop cool architecture with

complicated, ad-hoc language
• Bend over backwards to support

old languages like C/C++

C von-Neumann
machine

Supporting von Neumann
Languages

Why C (FORTRAN, C++ etc.) became very successful?
Abstracted out the differences of von Neumann machines

Register set structure
Functional units and capabilities
Pipeline depth/width
Memory/cache organization

Directly expose the common properties
Single memory image
Single control-flow
A clear notion of time

Can have a very efficient mapping to a von Neumann machine
“C is the portable machine language for von Numann machines”

Today von Neumann languages are a curse
We have squeezed out all the performance out of C
We can build more powerful machines
But, cannot map C into next generation machines
Need better languages with more information for optimization

New Languages for Cool
Architectures

Processor specific languages
Not portable

Increase the burden on programmers
Many more tasks for the programmer (parallelism
annotations, memory alias annotations)
But, no software engineering benefits

Assembly hacker mentality
Worked so hard on putting architectural features
Don’t want compilers to squander it away
Proof-of-concept done in assembly

Architects don’t know how to design languages

What Motivates Language
Designers

Primary Motivation Programmer Productivity
Raising the abstraction layer
Increasing the expressiveness
Facilitating design, development, debugging, maintenance of
large complex applications

Design Considerations
Abstraction Reduce the work programmers have to do
Malleablility Reduce the interdependencies
Safety Use types to prevent runtime errors
Portability Architecture/system independent

No consideration given for the architecture
For them, performance is a non-issue!

Is There a Win-Win Solution

Languages that increase programmer
productivity while making it easier to
compile

Example: StreamIt,
A spatially-aware Language

A language for streaming applications
Provides high-level stream abstraction

Exposes Pipeline Parallelism
Improves programmer productivity

Breaks the von Neumann language barrier
Each filter has its own control-flow
Each filter has its own address space
No global time
Explicit data movement between filters
Compiler is free to reorganize the computation

Example: Radar Array Front End
Splitter

FIRFilter FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

FIRFilter FIRFilterFIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter FIRFilter

Joiner

Splitter

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Detector

Magnitude

FirFilter

Vector Mult

Joiner

Radar Array Front End on Raw

Executing Instructions
Blocked on Network

Pipeline Stall

Bridging the Abstraction
layers

StreamIt language exposes the data movement
Graph structure is architecture independent

Each architecture is different in granularity and topology
Communication is exposed to the compiler

The compiler needs to efficiently bridge the abstraction
Map the computation and communication pattern of the program
to the tiles, memory and the communication substrate

Bridging the Abstraction
layers

StreamIt language exposes the data movement
Graph structure is architecture independent

Each architecture is different in granularity and topology
Communication is exposed to the compiler

The compiler needs to efficiently bridge the abstraction
Map the computation and communication pattern of the program
to the tiles, memory and the communication substrate

The StreamIt Compiler
Partitioning
Placement
Scheduling
Code generation

Optimized Performance for
Radar Array Front End on Raw

Executing Instructions
Blocked on Network

Pipeline Stall

Performance

240

19

640

1,430

0

200

400

600

800

1,000

1,200

1,400

1,600

C program C program Unoptimized
StreamIt

Optimized StreamIt

1 GHz Pentium III 420 MHz single tile
Raw

420 MHz 64 tile
Raw

420 MHz 16 tile
Raw

M
FL

O
PS

Success Criteria

1. Effective
Information available for more optimizations

2. Stable
Much more analyzable

3. General
Domain-Specific

4. Scalable
No global data structures

5. Simple
Heroic analysis vs. more transformations

Von
Neumann
Languages

Stream
Language

Compiler for:

Outline

Introduction

Overview of Multicores

Success Criteria for a Compiler

Data Level Parallelism

Instruction Level Parallelism

Language Exposed Parallelism

Conclusion

Overview of Success Criteria

1. Effective

2. Stable

3. General

4. Scalable

5. Simple

Von
Neumann
Languages

Stream
Language

Can Compilers take on
Multicores?

Success Criteria is Somewhat Mixed
But….

Don’t need to compete with unicores
Multicores will be available regardless

New Opportunities
Architectural advances in integrated multicores
Domain specific languages
Possible compiler support for using multicores for other
than parallelism

Security Enforcement
Program Introspection
ISA extensions

http://cag.csail.mit.edu/commit
http://www.determina.com

