
Extending Path Profiling across Loop Backedges
and Procedure Boundaries �

Sriraman Tallam Xiangyu Zhang Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

�tmsriram,xyzhang,gupta�@cs.arizona.edu

Abstract

Since their introduction, path profiles have been used to
guide the application of aggressive code optimizations and
performing instruction scheduling. However, for optimiza-
tion and scheduling, it is often desirable to obtain frequency
counts of paths that extend across loop iterations and cross
procedure boundaries. These longer paths, referred to as
interesting paths in this paper, account for over 75% of the
flow in a subset of SPEC benchmarks. Although the fre-
quency counts of interesting paths can be estimated from
path profiles, the degree of imprecision of these estimates is
very high. We extend Ball Larus (BL) paths to create slightly
longer overlapping paths and develop an instrumentation
algorithm to collect their frequencies. While these paths
are slightly longer than BL paths, they enable very precise
estimation of frequencies of potentially much longer inter-
esting paths. Our experiments show that the average cost of
collecting frequencies of overlapping paths is 86.8% which
is 4.2 times that of BL paths. However, while the average
imprecision in estimated total flow of interesting paths de-
rived from BL path frequencies ranges from -38 % to +138
%, the average imprecision in flow estimates derived from
overlapping path frequencies ranges only from -4% to +8%.
Keywords- path profiles, overlapping path profiles, profile
guided optimization, and instruction scheduling.

1 Introduction
Program profiling has been used extensively to distin-

guish regions of a program that are hot from rest of the
program. Hot regions are portions of the code where the
program spends most of its execution time. Execution
counts for basic blocks and edges were used extensively

�Supported by grants from IBM, Microsoft, Intel and NSF grants
CCR-0324969, CCR-0220334, CCR-0208756, CCR-0105355, and EIA-
0080123 to the Univ. of Arizona.

to locate hot regions of the code. However, for many
applications, such as path-sensitive optimizations and in-
struction scheduling, the execution frequencies of paths are
more desirable. Ball and Larus were the first to intro-
duce path profiling in [3]. Path profiles were designed to
subsume basic block and edge profiles. Moreover, Ball
and Larus developed instrumentation algorithms that en-
abled their collection at a reasonable cost. Since their
introduction, path profiles have been extensively used to
guide the application of path-sensitive code optimizations,
performing instruction scheduling, performing code lay-
out optimizations, and improving static branch prediction
[5, 6, 7, 8, 9, 12, 13, 14, 20, 11, 1, 10, 21].

Ball Larus paths (BL paths) are designed such that they
neither extend across consecutive loop iterations nor do they
extend across procedure boundaries. However, experience
with some applications shows that this limitation is not de-
sirable. Let us consider the partial redundancy optimiza-
tions which can be applied to eliminate redundant execu-
tions of expressions [7], array bounds checks [9], loads and
stores [8], and conditional branches [5]. Often redundancy
of these instructions arises when, during execution of loops,
the same instruction is executed multiple times, once during
each loop iteration. In [7, 8] it was shown that this situation
is common when redundancy in arithmetic expressions and
loads is considered. Therefore paths along which such re-
dundancy appears extend across loop backedges. Another
situation where redundancy is observed is when instruction
executed before a call (return) causes another instruction ex-
ecuted after the call (return) to become redundant. In [5] it
was shown that this situation is very frequent when redun-
dancy in conditional branches is considered. Thus, paths
along which such redundancy was observed extend across
procedure boundaries. Finally, when instruction scheduling
is carried out, if a loop is unrolled once before scheduling
(e.g., before trace scheduling [11]), then profiles of paths
that correspond to two loop iterations are needed.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

From the above discussion it should be clear that mak-
ing available the frequencies of paths that extend across
loop iterations and procedure boundaries is useful. One ap-
proach to obtaining frequencies of paths that are longer than
BL paths is to make use of whole program paths (WPPs)
which consist of a complete control flow trace of a program
[16, 22]. However, in contrast to path profiles, WPPs are
expensive to collect and require large amounts of storage to
save. An alternative approach is to estimate the frequencies
of longer paths from BL paths – this is analogous to the
approach developed in [4] to estimate the lower and upper
bounds on the frequency estimates of BL paths from edge
profiles. However, as we show in this paper, this approach
yields highly imprecise estimates.

Table 1. Flow attributable to interesting paths.

Benchmark Flow of paths across Total
Loop Procedure Flow

Backedges Boundaries

130.li 19.9 % 70.2 % 90.1 %
099.go 32.3 % 52.4 % 84.7 %

134.perl 9.6 % 75.9 % 85.5 %
008.espresso 56.4 % 26.1 % 82.5 %
147.vortex 2.1 % 94.1 % 96.2 %
197.parser 16.2 % 72.7 % 88.9 %
181.mcf 27.8 % 54.2 % 82.0 %

300.twolf 69.1 % 13.9 % 83.0 %
126.gcc 26.1 % 50.8 % 76.9 %

In this paper we address the problem of collecting pro-
files for paths longer than BL paths. We begin by character-
izing the paths whose execution counts we desire to obtain.
We will refer to these paths as the interesting paths for rest
of the paper. The interesting paths for loops are the ones that
extend across two consecutive loop iterations. Interesting
interprocedural paths are formed in two ways. BL subpaths
in the caller leading to a call site are concatenated with the
BL paths that begin at the callee’s entry. Also BL paths ter-
minating at the callee’s return point are concatenated with
BL subpaths following the call site in the caller. The inter-
esting paths as defined above are not only relevant for the
applications discussed earlier, they also happen to account
for most of the program’s execution time. Data in Table 1
supports this assertion. The percentage of total flow (i.e.,
sum of the frequency counts of all BL paths) that is cov-
ered by all interesting paths varies from 76.9% to 96.2%. It
is also clear that both types of interesting paths, those that
cross loop backedges and those that cross procedure bound-
aries, account for significant part of the flow.

While a straightforward approach for obtaining profiles
for interesting paths would be to instrument the program to
collect such profiles, this approach can be too expensive.
The increase in number of paths whose frequency counts
would have to be maintained could greatly exceed the num-

ber of BL paths. For example, in the benchmark 099.go, a
function has 283063 static loop paths and this would give
283063 * 283063 two iteration paths. Therefore we de-
velop an alternative approach that allows control over this
cost. We extend BL paths to create a new set of paths that
are longer than BL paths but shorter than interesting paths.
The extended paths overlap each other and thus we refer to
them as overlapping paths. The amount by which BL paths
are extended to create overlapping paths can be selected to
control the cost and this amount is referred to as the de-
gree of overlap. Using overlapping paths, the increase in
space is not so dramatic. For the above mentioned function
in 099.go, overlapping paths of degree � are 283063 * 2 in
number and for degree 2 there are 283063 * 4 paths. Once
we have collected the frequency counts of overlapping paths
by running an instrumented program, we use them to derive
estimates (lower and upper bounds) on the frequency counts
of interesting paths.

We develop the instrumentation algorithms to collect
profiles of overlapping paths and develop algorithms for
deriving estimates of frequency counts of interesting paths
from profiles of overlapping paths. Each of these algorithms
are parameterized with respect to the degree of overlap. We
have implemented these algorithms to compare the effec-
tiveness and costs of deriving estimates of interesting path
profiles from BL paths and overlapping paths. Our experi-
ments show that while overlapping paths are slightly longer
than BL paths, they enable very precise estimation of fre-
quencies of potentially much longer interesting paths.

The remainder of this paper is organized as follows. In
section 2 we consider paths that cross loop boundaries. We
develop algorithms for computing lower and upper bounds
on the frequencies of interesting paths from exact frequen-
cies of overlapping paths collected by instrumenting loops.
In section 3 we repeat the same process for paths that cross
procedure boundaries. In section 4 we present results of
experiments. Conclusions are given in section 5.

2 Paths Crossing Loop Backedges
Interesting paths are those paths that cross a loop

backedge only once and they are paths that correspond to
two consecutive iterations of a loop. Overlapping paths (OL
paths) are shorter than two iterations and OL path profiles
are used to estimate the execution frequencies of the inter-
esting paths. The equations for deriving these estimates are
parameterized by the degree of overlap. Overlap of zero
corresponds to BL paths.

2.1 Overlapping Paths

The overlapping paths are constructed by simply extend-
ing BL paths. Consider the control flow graph and its cor-
responding BL paths in Table 2. The basic blocks marked

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

with a ‘� ’ are predicate blocks (i.e., they end in a condi-
tional branch). There are �� BL paths in this example that
are divided into four groups: (i) Paths beginning at the basic
block ‘En’ and ending at ‘Ex’. Paths �, � and � belong to
this group; (ii) Paths beginning at the basic block ‘En’ and
ending at ‘��’ and immediately followed by the backedge.
Paths �, � and � belong to this group; (iii) Paths beginning at
‘��’ following the backedge and ending at ‘��’ and imme-
diately followed by the backedge. Paths �, � and � belong
to this group; and (iv) Paths beginning at ’��’ following the
backedge and ending at ‘Ex’. Paths �	, �� and �� belong to
this group.

Table 2. Ball-Larus paths in a CFG.

1 2

2 3

3

1

B

B P

B

P

P

En

Ex

Group Path Program Path
Id Id

1 ��� ��� �� � �� � ��

1 2 ��� �� � �� � �� � �� � ��

3 ��� �� � �� � �� � �� � ��

4 ��� �� � �� � ��
2 5 ��� �� � ��� �� � ��

6 ��� �� � ��� �� � ��
7 �� � �� � ��

3 8 �� � ��� �� � ��
9 �� � ��� �� � ��
10 ��� �� � �� � ��

4 11 �� � �� � �� � �� � ��

12 �� � �� � �� � �� � ��

We define an interesting path for the loop as the one that
has a basic block sequence that starts with the loop entry
node, �� in the above CFG, and corresponds to two itera-
tions of the loop. As an example, (�� � �� � �� ! �� �
�� � �� � ��) is one such interesting path. This path is
nothing but the basic block sequence of BL path � followed
by BL path � and is denoted as
� � ��, where ‘!’ is used to
mark the position of the backedge. Note that this interesting
path also appears in
� � ��,
� � ��� and
� � ���. Thus the
frequency of the interesting path is the sum of the frequen-
cies of these four paths. For the loop shown above, there are
exactly � interesting paths formed from all pairs of the ba-
sic block sequences of the � loop paths. However, the basic
block sequences corresponding to these � interesting paths
appear in �� different pairs of BL paths. In general
� � ��
is used to denote that interesting path whose basic block se-
quence appears in the two iterations of the loop contained
in
� � ��.

We define an overlapping path, or an OL path, as the
one that is obtained by extending a BL path to cross the
backedge and then terminating at any predicate within the
loop. By this definition, all the interesting paths are over-
lapping paths. More specifically, we define an overlapping
path to be a �-overlapping path, OL-� path, if it terminates
at the
����� predicate block following the backedge (the
terminating block of the loop is also treated as a predicate
block). We also call � to be the degree of the overlapping
path. For example, a OL-	 path for the above loop would
be, (�� � �� � �� ! ��). Notice that this path is equiv-
alent to BL path �. Though �� is not included in �, it is
trivial to see that �� is the only basic block that can be ex-
ecuted after the backedge is taken. Similarly, paths � to �
are all OL-	 paths, since they end at predicate block ��. In
other words, OL-	 paths are BL paths unextended. How-
ever, consider the OL-� path, (�� � �� � �� ! �� � ��).
It is clear that this path belongs to OL-� as it ends at the 2nd
predicate block following the backedge. Note that this path
is nothing but BL path � extended to ��, that is, extended
by 1 predicate block. The basic block sequences for few OL
paths of different overlaps are shown in Table 3. Also, the
number of OL paths of each degree are shown.

Table 3. Overlapping paths in the CFG.

Degree OL-k Path Examples Num. of
k Paths

� ��� �� � �� � �� ! ��, 6
�� � �� � �� � �� ! ��

� ��� �� � �� � �� ! �� � �� � ��, 12
�� � �� � �� ! �� � ��

� �� � �� � �� ! �� � �� � �� � �� 12

Notice that the maximum overlap possible for the loop
in Table 2 is only �. Also, notice that paths corresponding
to this overlap are interesting paths. As stated earlier, when
we estimate the profiles of the interesting paths, we choose
a degree of overlap depending on the cost we are willing
to incur. When we profile overlapping paths of degree �,
we also profile all other OL paths whose degree is less than
� but are not contained in the OL-k paths. Notice that as
we increase the degree of overlap, the number of paths that
have to be profiled increases and hence, the cost of profiling
them.

The next section discusses the equations involved in es-
timating the flow across the interesting paths. By flow of a
path we mean the frequency of a path.

2.2 Estimating Flow

Consider a loop which has � loop paths, numbered
� � � � �, in the depth first search order. The number of dif-
ferent interesting paths in this loop is ��. Let �� denote the
flow of the ��� loop path. If the frequency of the backedge

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

is �, then, the following equation holds.

�� � �� � � � �� �� � �� (1)

Now, we wish to estimate the frequencies of the �� inter-
esting paths, which are nothing but all pairs (� � �) formed
out of the � loop paths. Let �� � � denote the real flow of the
interesting path � � �. Let ��� � ����� denote the frequency
of the OL path, � � �
���, that begins with basic block se-
quence �, takes the backedge, and then follows the basic
block sequence contained in path �, however, terminating
at predicate �� . If more than one �� path contains this ba-
sic block sequence as its suffix, we add their frequencies to
obtain ��� � ���� �. As an example, for the loop in Table 4,
��� � ����� will be the flow of the OL path that has the fol-
lowing basic block sequence: �� � �� � �� ! �� � ��.
��� � ���� � can be computed using the following equa-

tion.
��� � �����

�
�

�� � � (2)

where � � 	 are all the interesting paths that contain the basic
block sequence of the OL path (� � �
���). For instance, for
the loop in Table 4, ��� � ����� � �� � � �� � �, and this
can be easily proved.

We derive the estimates for the frequencies of the over-
lapping paths by getting the upper and lower bounds of the
frequencies of the paths in the following sections.

2.2.1 Generating the Upper Bounds of the Frequencies

Let us assume we profile overlapping paths of some degree
less than or equal to
. Let us now find the upper bound
of the frequency of the interesting path � � �. Let �� � �

and � � � denote the lower and upper bounds for the flow
of path � � � respectively. Also, let ��� � ����� be the fre-
quency of the OL path of degree less than or equal to
 we
profiled such that,

��� � �����
� �� � � � �� � � � � � � �� � � (3)

where �, �, . . . , � all have the same prefix as �, the prefix
ending in �� .

From the above equation a possible value for � � � is the
right hand side of the inequality below.

�� � � � ��� � �����
� �� � � � � � �� �� � � (4)

Subtracting the lower bounds of all paths other than � � �
from ��� � ����� gives us a candidate upper bound for the
flow of path � � �. We can derive two other candidates
for � � � as follows. Let �� denote the number of times
loop path � was executed as the first iteration and�� be the
number of times path � was executed as the last iteration.
The value of �� and �� can be directly obtained from the
BL path profile. Clearly,

�� � � � �� �	�� (5)

Also,
�� � � � �� � ��� (6)

Using equations 4, 5 and 6 we can compute �� to be

� � � �����
�

�
���� � �����

� �� � � � � � �� �� � ���

��� �	��� ��� ����

�
�

(7)

The minimum of the three candidate upper bounds ensures
that our upper bound estimate is tight.

Equation 4 clearly shows that the upper bounds of the
frequencies could depend on the lower bounds. Similarly,
we will show in the next section that the lower bounds of the
frequencies also depend on the upper bounds. This means
that the equations have to be computed iteratively till the
values of the bounds stabilize. However, to compute the
initial values of the upper bounds, we can assume the lower
bounds of all other paths to be zero.

2.2.2 Generating the Lower bounds of the Frequencies

Again, consider Equation 3. Using a similar reasoning as in
the previous case, we can compute the lower bound of the
frequency of the interesting path � � � to be

�� � � ���	��
�� ���� � ���	� �
� � � � � � ��
� � ��� ��
(8)

The above equation shows that the lower bounds do de-
pend on the upper bounds. The next section shows the use
of these equations in an example.

As mentioned in [4], the sum of the lower (upper) bounds
of the frequencies of the interesting paths is referred to as
the Definite (Potential) flow.

2.2.3 An Example

Consider the control flow graph shown in Table 4. It is the
same loop as used before except that numbers mark the flow
values of different loop paths. The basic block sequences of
the 3 loop paths are shown below.

1 : �� � �� � ��
2 : �� � �� � �� � ��
3 : �� � �� � �� � ��

Consider the following execution history of the loop dur-
ing a program run. Lets say the loop was entered �		 times
from outside. For the first ��	 times, the path corresponding
to the sequence � � � � � was taken and for the remaining
250 times, the path corresponding to the sequence � � � � �
was taken. Thus, the frequencies of sequences �, � and � are
all 500. The frequency of the backedge B is 1000. This also
means that�� and�� are 250 and�� is 500. Also, the only
interesting paths that have non-zero frequencies are shown
in Table 4.

Now, let us compute the estimates of the frequencies of
the interesting paths using OL-	 (i.e., BL) paths. In partic-
ular let us first get estimates for interesting paths beginning
with sequence �. The frequency of OL-0 path of interest is

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Table 4. Frequencies of interesting paths.

Entry

Exit

500
500 500

1000

P1

B1 P2

B2 B3

P3

Interesting Path Frequency

� � � ���
� � � ���
� � 	 ���
� � 	 ���

��� � ����� and is equal to �		, since��� � ����� � �� � �
�� � � �� � �. Now, applying these values in Equations 7
and 8 we get, the following values: � � � � ��	� �� � � �
	, � � � � ��	� �� � � � 	 and � � � � �		� �� � � � 	.
The estimates of the other paths can be similarly computed
and are given in Table 5.

Now to get the estimates of interesting paths beginning
with sequence � using OL-� paths, we use the frequency
��� � ����� and ��� � �����. Notice that ��� � ����� is ex-
actly equal to �� � �. Again, we apply the equations as be-
fore and the estimates obtained are shown in the table.

Table 5. Estimates using OL paths.

Interesting Real Lower Bound Upper Bound
Path Frequency OL-� OL-� OL-� OL-�

� � � ��� � ��� ��� ���
� � � � � � ��� ���
� � 	 ��� � � ��� ���
� � � � � � ��� �
� � � ��� � � ��� ���
� � 	 ��� � � ��� ���
	 � � � � � � �
	 � � � � � � �
	 � 	 � � � � �

The real flow in the loop is the sum of the frequencies of
the interesting paths and is equal to �			. The definite and
potential flows that we get using OL-	 paths are 	 and �			
which are off the real flow by��		�. Whereas, using OL-
� paths, the flows are ��	 and ���	, off by -75% and +25%.
Also, notice that OL-� paths should give us accurate profiles
since the maximum overlap of this loop is �.

2.3 Instrumentation

We extend the algorithm proposed by Ball and Larus so
that instead of collecting BL path profiles, we can collect
overlapping path profiles. This algorithm has two parts: de-
riving an acyclic path graph which is used to determine the
required instrumentation and carrying out the instrumenta-
tion of the original code.

Deriving the Path Graph. Ball and Larus derive an
acyclic graph which contains exactly the BL paths. This
graph is used as a basis of assigning ids to paths and edges
of this graph are assigned increment values. The sum of the
increments on the edges along a given path generates the
path id. Figure 1 shows a CFG in (a) which is converted
into (b) to determine instrumentation for BL paths. To de-
termine instrumentation for overlapping paths of degree 2,
the graph in (c) is used. As we can see, an additional por-
tion of the loop body is included to extend the paths upto
the lengths of the desired overlapping paths. This additional
portion of the path graph is called the overlapping graph.

Let us consider the construction of the path graph in de-
tail. As a first step, given a loop body� and overlap �, three
sets of edges are identified in �.

� Definitely instrumented [DI] edges , the number of
predicates along all the paths to these edges is less
than or equal to �. In Figure 1(c), edges � �

� � � �

�

and ��

� � � �

� are examples for DI edges for overlap
degree of �.

� Possibly instrumented [PI] edges, the number of pred-
icates along some paths to these edges is less than or
equal to �. In Figure 1(c), edge � �

� � ��

� is PI edge.
Because path � �

� � ��

� � � �

� � ��

� has � predicates
and path � �

� � � �

� � � �

� � ��

� has � predicates.

� Definitely not instrumented [DNI] edges, the num-
ber of predicates along all the paths to these edges is
greater than �. In Figure 1(b), edge �� � �� is DNI
edge for overlap �. Because all the paths from loop
head �� to this edge has more than � predicates.

Given the DI, PI and DNI edges in a loop body �, the
overlapping graph is constructed as follows: all DNI edges
are removed from �; DI edges are distinguished from the
PI edges (PI edges are drawn using dotted lines in the fig-
ure); and nodes which are not reachable from loop head are
removed. The shaded area in Figure 1(c) contains the over-
lapping graph for overlap �.

We first generate the path graph of Figure 1(b) from the
CFG of Figure 1(a) using Ball and Larus algorithm, which
removes the backedge �� � ��, adds dummy edges from
�� to �� and from �� to ��. Next we replace the dummy
edge from �� (loop exit) to �� with an edge from �� to
� �

�, the head of OG for the loop. For any node � in OG, if
there is a path from loop head to� having �� predicates,
we connect � to �� with a dummy edge. For example,
� �

� in (c) and � �

� in (c) are connected to �� with dummy
edges. Finally we assign chord increments to edges accord-
ing to Ball and Larus’s algorithm. The generated graph is
the desired path graph.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Instrumentation. The steps of the instrumentation algo-
rithm for a given CFG and its corresponding path graph PG
are as follows:

P1

P3

P2

P0

En

B1

B3

B4

Ex

(ro>0)?:count[ro]++;
ro=r+1;
r=61;
ol=0;

P4

B2

P1

P3

P2

P0

En

B1

B3

B4

Ex

P4

B2

=0

+1

+4

+4

+2

+1

=13

P1

P3

P2

P0

En

B1

B3

B4

Ex

P4

B2

=0

+1

+20

+20

+10

=61

P1'

P3'

P2'B1'

B3'

P4'

B2'

+3

+3

+2
+1

+1

P1

P3

P2

P0

En

B1

B3

B4

Ex

P4

B2

r=0;

r=r+1;
ro=-INFINITE

ol++;

ol++;

ol++;

r=r+20;
ro=ro+3;

r=r+20;
ro=ro+3;

r=r+10;
(ol<3)?:ro=ro+2;

(ol<3)?:ro=ro+1;

(ro>0)?:count[ro]++;

count[r]++;

(a) CFG (b) BL Graph

(c) OL2 graph

(d) Instrumented CFG (OL2)

BL path (example for (b)):
P1 P2 P3 B2 P4

 (path_id= 20)

OL2 path (example for (c)):
 P1 P2 P3 B2 P4 P1 B1 P3 B2 P4

 (path_id=94)

(e)

Figure 1. Instrumenting for OL paths.

� If an edge � of CFG is marked ’�� �’ in the white area
of PG and it is not a dummy edge, it is instrumented
with ’� � � �� �’.

� If an edge � of CFG is marked ’�� �’ in the dark area
and it is a non-dummy DI edge in PG, it is instru-
mented with ’�� � �� �� �’.

� If � is marked ’�� �’ in the dark area and it is a non-
dummy PI edge in PG, it is instrumented with ’
�	 �
��� � �� � �� �� �’.

� If � is the entry edge to the loop, it is instrumented with
’�� � ��’.

� If � is a predicate inside the loop, it is instrumented
with ’�	 �’.

� If � is the exit edge from the loop, it is instrumented
with ’
�� � 	�� � ��������� �’.

� If � is the backedge, and the dummy edge from ��

to loop head is marked with ’� �’, the dummy edge
entering the dark area is marked with ’�� �’, the
backedge is instrumented with:

�� � 	�� � ��������� �
�� � � �� � � �� �	 � 	�

� If � is an edge to ��, it is instrumented with
’�������� �’.

The instrumented CFG for our running example is shown in
Figure 1(d).

3 Paths Crossing Procedure Boundaries
In this section, we consider interesting and overlapping

paths that cross procedure boundaries. These paths are the
ones that start in one procedure and end in another proce-
dure. It should be noted that while Melski and Reps [17]
have also proposed an approach for profiling interprocedu-
ral paths, their approach is too expensive for use in prac-
tice. They create a single supergraph which connects all
procedures and then use Ball Larus method to enumerate
the paths in this combined flow graph. The number of paths
will increase dramatically in this approach. Moreover, the
presence of function pointers complicates the construction
of the supergraph. Our approach based upon overlapping
interprocedural paths is much more practical.

3.1 Interprocedural Overlapping Paths

Table 6. OL-� Paths of Type � in the CFG.

Degree I-OL-k Path Examples Number
k of Paths

� ���� ��� �� � �� � 3
�� � ���� ��

� ���� �� � �� � �� � �� � 6
���� �� � �� � ���

� ���� �� � �� � �� � �� � 6
���� �� � �� � ��

	 ���� �� � �� � �� � �� � ���� 12
�� � �� � �� � �� � ���

Consider the interprocedural control flow graph shown
in Figure 2. The CFG for f() has a call site where function

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

fEn

P1

P2

B1 B2

B3

C1: g()

P3

B4 B5

B6

P1

P2

P3

B1

B2

B3

fEx

gEx

gEn

Figure 2. CFGs for two functions.

Table 7. OL-� Paths of Type �� in the CFG.

Degree k II-OL-k Path Examples Number of Paths

� ���� �� � �� � 5
��� � �� � ��

� ���� �� � �� � ��� � 10
�� � �� � �� � �� � ���

g() is called. There are two types of interesting paths we
want to look at. The first type of paths start in f() and end
in g(). The second type of paths start in g() and end in f().
Examples of paths are given below.

Type I: ���� ��� �� � �� � �� � ���� ��� �� � ���

Type II: ���� �� � �� � ��� � �� � �� � �� � �� � ���

Let us call them interesting paths of Type � and Type �� .
Notice, that there are �� different paths of Type � and �	
different paths of Type �� . For paths of Type � , there are �
different ways of reaching call site � from !�� and each
of these could end with any of the � paths in g() giving rise
to a total of �� different paths. A similar argument holds
for paths of Type �� . To estimate the profiles of these in-
teresting paths, we form overlapping paths as follows. To
accommodate the interesting paths of Type � , we break the
BL paths of function f() at the call site and extend them into
function g(), the extension being dependent on the overlap
in question. Lets call these overlapping paths as �-OL paths,
� used to indicate that they correspond to interesting paths
of Type � .
�-OL paths are defined as follows. A �-OL-� path starts

at the node !�� and extends into function g() after the call
site and stops at the
� ���� predicate node following C1
in g(). Table 6 shows some �-OL paths of different degrees.
We assume that "�� is a predicate node. Note that the max-
imum degree for the example CFG is �.

Now, let us discuss the overlapping paths of Type �� ,
called ��-OL paths. These paths correspond to the inter-
esting paths of Type �� and are used to estimate their fre-
quencies. A ��-OL path of degree �, written as ��-OL-�,
is a BL path in g() that extends into function f() after the re-
turn, and ends at the
����� predicate block following the
return edge. Table 7 shows some ��-OL paths of different
degrees. We assume that !�� is a predicate node. Notice
that the maximum degree possible in the CFG is �.

3.2 Estimating Flow

This section presents the equations involved in estimat-
ing the flow of paths across procedure boundaries. First, the
estimation process using BL paths is described and then the
estimation using overlapping paths is presented.

3.2.1 Estimation using BL Paths

Consider an interprocedural CFG of two functions f() and
g(). Let f() be the caller and g() be the callee. Let us con-
sider a call site in f() that has a call to function g(). Let us
assume that there are � paths in function f() starting from
the entry node to the call site. Let us number them �� � � � � �
according to a depth first search order. Also, let us assume
there are 	 paths in function g() numbered �� � � � � 	 similarly.
Let us first estimate the flow of Type � paths. The analysis
for Type �� paths is similar.

Now, all the interesting paths of Type � have the form
� � �, where � and � are the paths from f() and g() respec-
tively. Let �� � � represent the actual frequency of inter-
esting path � � �. Let � � � and �� � � be its upper and
lower bounds. Also, let �� (��) be the frequency of the ba-
sic block sequence represented by � (�). We can find the
frequencies of each of these basic block sequences by sum-
ming the frequencies of all BL paths that contain these se-
quences. Let be the number of calls made from f() to g().
This can be obtained by instrumenting the program appro-
priately. Then, the following equation holds.

���	��
�
���	���

�� � � � (9)

From equation 9 we can derive a candidate estimate for the
upper bound to be the right hand side of the following equa-
tion.

� � � � �� � � �

���	��
�
���	���

�� � �� (10)

Also, we can derive two other candidate estimates for � � �

as follows.

� � � � �� (11)

and

� � � � �� (12)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Using equations 10, 11 and 12, we can compute the
value of � � � to be

� � � �����
�

�
�� � �� � � �

����
	��

���
	��
�� � 	��

��� ��

�

(13)

Equation 13 shows that the upper bound is dependent
on the lower bounds. We will also show by Equation 14
that the lower bound is also dependent on the upper bounds.
Hence, we need to recompute the bounds iteratively till their
values stabilize. For, computing the initial values of upper
bounds, we can assume that the lower bounds are zeroes.
Equation 14 shows the equation for calculating the lower
bound.

�� � � ���	��
�� �� �
� � � �

���
	���
���
	��

� � 	�� � � (14)

The equations for estimating the frequencies of the inter-
esting paths of Type �� are similar.

3.2.2 Estimation using Overlapping Paths

Let us derive equations for estimating the frequencies of the
interesting paths using overlapping paths. Again, let us first
derive estimates of interesting paths of Type � . The analysis
of Type �� follows. Let ��� � ���� � be the frequency of the
overlapping path that starts with the basic block sequence
of the ��� path in function f(), and follows the basic block
sequence of the ��� path in function g(), however, termi-
nating at predicate �� in function g(). For instance, in the
CFG in Figure 2,��� � ����� represents the frequency of the
overlapping path given below.

!��� �� � �� � �� � � � "��� ��

Now, the following equation holds

��� � �����
�
�

�� � � (15)

where 	 represents all the sequences in g() that have the
same prefix as �, prefix ending in predicate �� .

Let ��� � ���� � be the frequency of the overlapping path
of degree
 we profiled such that

��� � �����
� �� � � � �� � � � � � � (16)

the equation got by merely expanding the right hand side
of Equation 15. We can then compute the upper bounds of
frequency of path � � � using Equation 16 as follows.

� � � �����
�� ���� � ���	� � �� � � � � � ��� �� � (17)

and then compute the lower bounds using Equation 18 as
shown below.

�� � � ���	��
�� ���� � ���	� �
� � � � � � ��� � � (18)

As before, since the values of upper and lower bounds are
dependent on each other, we recompute them iteratively till
they stabilize.

The equations for the upper and lower bounds are similar
for Type �� and can be derived analogously.

3.2.3 An Example

Consider the interprocedural CFG shown in Figure 2. The
paths in function f() are

� : ���� �� � �� � �� � �� � ��

� : ���� �� � �� � �� � �� � ��

	 : ���� �� � �� � �� � ��

and the paths in function g() are

� : ���� �� � �� � ���

� : ���� �� � �� � �� � �� � �� � ���

	 : ���� �� � �� � �� � �� � �� � �� � ���

 : ���� �� � �� � �� � �� � ���

� : ���� �� � �� � �� � �� � �� � ���

Consider an execution in which the number of calls made
from f() to g() is �		. Also, let � � � is the only interesting
path to have a non-zero frequency of �		. Also, let the fre-
quency of each of the � sequences shown above be �		. An
estimate using BL path profiles alone would give a flow of
anywhere between 	 and �		 for all �� interesting paths.
Whereas, an estimate using I-OL-� paths would give us ex-
act values. Note that the maximum overlap possible is �.

3.3 Instrumentation

In the previous section, we mentioned that there are two
types of interprocedural overlapping paths. In this sec-
tion, we explain how to instrument these paths. For the
instrumentation of overlapping loop paths we simply ex-
tended BL’s instrumentation by enumerating the overlap-
ping loop paths. But it is inappropriate to make a similar
extension for interprocedural overlapping paths because the
existence of function pointers can make the extended graph
very huge. So we use a different instrumentation for in-
terprocedural overlapping paths. Instead of using an one
dimensional counter array, we use four dimensional array
���������������	� where � is the function id of the callee, � is
the global id for the call site, � is the path id in callee, and
	 is the path id in the caller. In other words, we use a four
tuple to represent an interprocedural overlapping path.

We demonstrate how to do instrumentation by an exam-
ple. Figure 2 shows the CFGs for two functions ! and ".
There is a call � to function " in ! . We are going to instru-
ment the II-OL-1 paths in this example. For the call site �,
we construct the Overlapping Graph (OG) of Figure 3(a)
in a way similar to the overlapping loop paths. The entry
node of OG here is a call site instead of a loop head. The
caller’s parts of the interprocedural paths are enumerated by
this OG. The enumeration graph for the callee is the same as
BL’s enumeration graph. Given these enumeration graphs,
we instrument the marked edges like BL’s algorithm. Fur-
thermore, we instrument the call site by adding two param-
eters, � and !���. Here !��� is to return the function id
of callee. This is necessary because if function pointers are
used, the caller has no idea about who is the callee unless the

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

P1

P2

P3

B1

B2

B3

gEx

gEn
=0

+1

+2

+1

C1: g()

P3

B4 B5

B6

fEx

=0

+1

(a) Overlapping Graph
 for call site C1 in f

(b) BL graph for g

Figure 3. Path enumeration.

callee explicitly tells the caller. In the instrumented CFGs
of Figure 4, we can see !��� is assigned the id of function
" at the beginning of "’s execution. � is used to enumerate
the paths in the callee, which are the subpaths of the inter-
procedural overlapping paths. �� is used to enumerate the
subpath in the caller. The concatenated path � � �� is the
interprocedural overlapping path. We can see, at the exit
edge of caller’s OG, the counter corresponding to the path
� !���� �� �� �� � is incremented by 1.

fEn

P1

P2

B1 B2

B3

P3

B4 B5

B6

P1

P2

P3

B1

B2

B3

fEx

gEx

gEn

g (int & r, void * &func)

ro=0;

ro=ro+1;

count[func][C1][r][ro]++;

C1: g(r, func)

r=0;
func=g;

r=r+1;

r=r+2;

r=r+1;

Figure 4. Instrumentation.

4 Experimental Results
We have implemented our algorithms using the Trimaran

compiler infrastructure [19]. Based upon this implementa-
tion we carried out an experimental evaluation whose re-

sults are reported in this section. There were two objec-
tives of the experimentation: to evaluate the improvement
in precision of estimates of interesting path profiles com-
puted from overlapping path profiles of varying degrees of
allowable overlap; and to evaluate the overhead of collect-
ing overlapping path profiles. It was also our goal to com-
pare the precision and overhead associated with overlapping
path profiles with that of BL path profiles. We also collected
the whole program path profiles [16] to determine the pre-
cise frequency of any path for a program run.

4.1 Precision: OL vs. BL path profiles.

The detailed results of our experiments for nine bench-
mark programs are presented in Figures 5 and 6.

First we computed the real total flow of the interest-
ing paths and then compared it with the total estimated
flow (lower/upper bounds or definite/potential flows) for the
same paths when estimates were derived from overlapping
path profiles of varying degrees of overlap. As we can see
from Figure 5, the precision improves as degree of overlap
increases. The point corresponding to overlap of -1 repre-
sents estimates derived using BL paths. It is clear that while
BL paths provide highly imprecise estimates, an overlap
set at approximately one-third of maximum possible over-
lap gives us fairly good estimates. In Table 8 the estimates
corresponding to this threshold are presented. While the
average imprecision in estimated total flow of interesting
paths derived from BL path frequencies ranges from -38%
to +138%, the average imprecision in flow estimates derived
from overlapping path frequencies range only from -4% to
+8%.

Second we also looked at the number of interesting
paths for which estimated frequency matched the actual fre-
quency (i.e., upper and lower bounds derived were identi-
cal). This data is plotted in Figure 6. The interesting ob-
servation here is that in benchmarks where there are large
number of interesting paths (e.g., mcf and twolf) and the
maximum amount of overlap possible is very high, a small
overlap is sufficient to get precise estimates for vast major-
ity of the paths. This observation further shows that it is
sufficient to use small overlaps to derive highly precise flow
estimates.

4.2 Overhead: OL vs. BL path profiles.

We also present the overhead of collecting overlapping
path profiles for varying degrees of overlap in Figures 7,
8 and 9. The first graph shows the overhead of collecting
overlapping loop path profiles for varying degrees of over-
lap. The overhead corresponding to zero overlap represents
the overhead of collecting BL path profiles in our imple-
mentation. The second graph presents the data for overhead
associated with collecting overlapping interprocedural path

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

130.li Flow: All Paths

0

1000000

2000000

3000000

4000000

5000000

6000000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

099.go Flow: All Paths

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Overlap

E
st

im
at

ed
 F

lo
w Real Flow

Definite Flow
Potential Flow

134.perl Flow: All Paths

0

100000

200000

300000

400000

500000

600000

700000

800000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

008.espresso Flow: All Paths

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

147.vortex Flow: All Paths

1000000

1050000

1100000

1150000

1200000

1250000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

197.parser Flow: All Paths

0

1000000

2000000

3000000

4000000

5000000

6000000

-1 0 1 2 3 4 5
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

181.mcf Flow: All Paths

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

300.twolf Flow: All Paths

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

126.gcc Flow: All Paths

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

-1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
Overlap

E
st

im
at

ed
 F

lo
w

Real Flow
Definite Flow
Potential Flow

Figure 5. Total flow.

130.li Precise All Paths

0

200

400

600

800

1000

1200

1400

-1 0 1 2 3 4 5 6 7 8 9 10 11 12
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths
Accurate Paths

099.go Precise All Paths

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

134.perl Precise All Paths

0

500

1000

1500

2000

2500

3000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

008.espresso Precise All Paths

0

2000000

4000000

6000000

8000000

10000000

12000000

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

147.vortex Precise All Paths

0

1000

2000

3000

4000

5000

6000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

197.parser Precise All Paths

0

50

100

150

200

250

300

350

400

450

500

-1 0 1 2 3 4 5
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

181.mcf Precise All Paths

0

200

400

600

800

1000

1200

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

300.twolf Precise All Paths

0

500

1000

1500

2000

2500

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths

Accurate Paths

126.gcc Precise All Paths

0

5000

10000

15000

20000

25000

30000

35000

-1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47
Overlap

A
cc

u
ra

te
 P

at
h

s

Total Paths
Accurate Paths

Figure 6. Precisely estimated paths.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Table 8. Definite and potential flow.

Benchmark Real Using BL Using OL-k
Flow Definite Flow Potential Flow Definite Flow Potential Flow k Chosen k Max

130.li 3539310 2350308 (-33.6 %) 4793897 (35.4 %) 3411257(-3.6 %) 3666315 (3.5 %) 2 12
099.go 1043000 260200 (-75 %) 4549045 (336.2 %) 1017335 (-2.4 %) 1089760 (4.4 %) 10 29

134.perl 583202 530643 (-9 %) 706814 (21.1 %) 583163 (0 %) 583289 (0 %) 10 29
008.espresso 1176329 677091 (-42 %) 18988987 (1514 %) 1173703 (-0.2 %) 1970368 (67 %) 14 45
147.vortex 1150460 1082634 (-5.8 %) 1210629 (5.2 %) 1148352 (-0.2 %) 1152686 (0.2 %) 6 18
197.parser 3783648 2268678 (-40 %) 4861451 (28.4 %) 3224556 (-14.8 %) 4344380 (14.8 %) 2 5
181.mcf 4454330 2718793 (-38.9 %) 6553449 (47.1 %) 4345860 (-2.4 %) 4577679 (2.7 %) 7 22

300.twolf 4509841 3041739 (-32.5 %) 6908699 (53.2 %) 4415177 (-2.1 %) 4636763 (2.8 %) 4 14
126.gcc 2076527 978781 (-52.8 %) 4487127 (116 %) 2068457 (-0.4 %) 2087944 (0.55 %) 14 48
Average 2479627 1545429 (-37.6 %) 5895566 (138 %) 2376428 (-4.1 %) 2678798 (8 %) 8 25

Overlapping loop paths

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

Overlap

O
v
er

h
ea

d

130.li
008.espresso

099.go

147.vortex

134.perl

181.mcf

300.twolf

126.gcc

197.parser

Figure 7. Overhead of profiling OL loop paths.

Overlapping interprocedural paths

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40 45 50

Overlap

O
v

er
h

ea
d

197.parser

008.espresso

099.go

147.vortex

134.perl

181.mcf

300.twolf

130.li

126.gcc

Figure 8. Overhead of profiling OL interpro-
cedural paths.

Sum

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

Overlap

O
v
er

h
ea

d

130.li

008.espresso

099.go

147.vortex

134.perl

126.gcc

181.mcf
197.parser

300.twolf

Figure 9. Overhead of profiling all OL paths.

profiles. The third graph shown the overhead of collecting
profile data for all overlapping paths. The overhead of pro-
filing overlapping interprocedural paths is higher than that
of profiling overlapping loop paths.

Table 9 gives the overhead of collecting frequencies of
BL paths and overlapping paths when the overlap is set at
approximately one-third of the maximum possible overlap.
The average overhead of collecting overlapping path pro-
files is 86.8%. On an average this overhead is 4.2 times that
of profiling BL paths.

Recently techniques have been proposed that exploit
edge profiles to selectively profile subset of program paths
[2, 15]. These techniques can be used to reduce the over-
head of our approach.

5 Conclusions
In this paper we identified a new class of paths: over-

lapping loop and interprocedural paths. Collecting profiles
for such paths is useful because using them we can estimate
the frequencies of interesting paths that cross loop and pro-
cedure boundaries. The interesting paths are relevant for

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Table 9. Instrumentation overhead.

Benchmark BL (%) OL-k paths (%) All
Loop Interproc. All BL

130.li 33.5 43.5 67.3 110.8 3.3
099.go 20.3 33.0 47.8 80.8 3.98

134.perl 9.9 12.7 58.2 70.9 7.16
008.espresso 25.1 47.7 33.5 81.2 3.23
147.vortex 17.3 17.9 62.3 80.2 4.64
197.parser 25.7 30.1 50.0 80.1 3.12
181.mcf 31.9 49.6 54.7 104.3 3.27

300.twolf 25.3 46.2 41.1 87.3 3.45
126.gcc 15.8 23.4 62.5 85.9 5.44
Average 22.7 33.8 53.0 86.8 4.2

many code optimizations and global instruction scheduling.
The cost of collecting overlapping path profiles is reason-
able and the frequency estimates for interesting path profiles
derived from overlapping path profiles are highly precise. In
contrast similar estimates derived using BL path profiles are
highly imprecise.

References

[1] G. Ammons and J.R. Larus, “Improving Data Flow Analysis
with Path Profiles,” ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 72-
84, Montreal, Canada, 1998.

[2] T. Apiwattanapong and M.J. Harrold, “Selective Path Profil-
ing,” ACM SIGPLAN-SIGSOFT Workshop on Program Analy-
sis for Software Tools and Engineering (PASTE), pages 35-42,
Charleston, South Carolina, 2002.

[3] T. Ball, and J. Larus, “Efficient Path Profiling,” IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages
46-57, Paris, France, December 1996.

[4] T. Ball, P. Mataga, and M. Sagiv, “Edge Profiling versus Path
Profiling: The Showdown,” ACM Symposium on Principles of
Programming Languages (POPL), pages 134-148, San Diego,
CA, January 1998.

[5] R. Bodik, R. Gupta, and M.L. Soffa, “Interprocedural Con-
ditional Branch Elimination,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 146-158, Las Vegas, Nevada, June 1997.

[6] R. Bodik and R. Gupta, “Partial Dead Code Elimination us-
ing Slicing Transformations,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 159-170, Las Vegas, Nevada, June 1997.

[7] R. Bodik, R. Gupta and M.L. Soffa, “Complete Removal
of Redundant Expressions,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 1-14, Montreal, Canada, June 1998.

[8] R. Bodik, R. Gupta, and M.L. Soffa, “Load-Reuse Analy-
sis: Design and Evaluation,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 64-76, Atlanta, Georgia, May 1999.

[9] R. Bodik, R. Gupta, and V. Sarkar, “ABCD: Eliminating Array
Bounds Checks on Demand,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 321-333, Vancouver B.C., Canada, June 2000.

[10] E. Duesterwald and V. Bala, “Software Profiling for Hot Path
Prediction: Less is More,” ACM 9th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 202-211, Nov. 2000.

[11] J.A. Fisher, “Trace Scheduling: A Technique for Global Mi-
crocode Compaction,” IEEE Transactions on Computers, C-
30:478-490, 1981.

[12] R. Gupta, D. Berson, and J.Z. Fang, “Resource-Sensitive
Profile-Directed Data Flow Analysis for Code Optimization,”
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 558-568, December 1997

[13] R. Gupta, D. Berson, and J.Z. Fang, “Path Profile Guided
Partial Dead Code Elimination Using Predication,” Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 102-115, San Francisco, 1997.

[14] R. Gupta, D. Berson, and J.Z. Fang, “Path Profile Guided
Partial Redundancy Elimination Using Speculation,” IEEE In-
ternational Conference on Computer Languages (ICCL), pages
230-239, Chicago, Illinois, May 1998.

[15] R. Joshi, M. Bond, and C. Zilles, “Targeted Path Profiling:
Lower Overhead Path Profiling for Staged Dynamic Optimiza-
tion Systems,” IEEE-ACM International Symposium on Code
Generation and Optimization (CGO), March 2004.

[16] J.R. Larus, “Whole Program Paths,” ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 259-269, Atlanta, GA, may 1999.

[17] D. Melski and T. Reps, “Interprocedural Path Profiling,”
8th International Conference on Compiler Construction (CC),
pages 47-62, LNCS 1575, Springer-Verlag, 1999.

[18] G. Ramalingam, “Data Flow Frequency Analysis,” ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 267-277, Philadelphia, 1996.

[19] The Trimaran Compiler Research Infrastructure. Tutorial
Notes, November 1997.

[20] C. Young and M.D. Smith, “Better Global Scheduling Us-
ing Path Profiles,” IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 115-123, 1998.

[21] C. Young and M.D. Smith, “Improving the Accuracy of
Static Branch Prediction Using Branch Prediction,” ACM
6th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 232-241, October 1994.

[22] Y. Zhang and R. Gupta, “Timestamped Whole Program Path
Representation and its Applications,” ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 180-190, Snowbird, Utah, June 2001.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

