
The Accuracy of Initial Prediction in Two-Phase Dynamic Binary Translators

Youfeng Wu, Mauricio Breternitz, Justin Quek, ‡Orna Etzion, Jesse Fang

Corporate Technology Group (CTG) ‡Software and Solutions Group (SSG)
Intel Corporation

{youfeng.wu, mauricio.breternitz.jr, orna.etzion, jesse.z.fang}@intel.com

Department of Electronic and Computer Engineering
University of Illinois, Urbana-Champaign

quek@crhc.uiuc.edu

Abstract
Dynamic binary translators use a two-phase approach

to identify and optimize frequently executed code
dynamically. In the first step (profiling phase), blocks of
code are interpreted or quickly translated to collect
execution frequency information for the blocks. In the
second phase (optimization phase), frequently executed
blocks are grouped into regions and advanced
optimizations are applied on them.

This approach implicitly assumes that the initial
profile of each block is representative of the block
throughout its lifetime. This study investigates the ability
of the initial profile to predict the average program
behavior. We compare the predicted behavior of varying
lengths of the initial execution with the average program
behavior for the whole program execution, and use the
prediction from the training input as the reference. Our
result indicates that, for the SPEC2000 benchmarks, even
very short initial profiles have comparable prediction
accuracy to the traditional profile-guided optimizations
using the training input, although the initial profile is
inadequate for predicting loop trip count information for
some integer programs and several benchmarks can
benefit from phase-awareness during dynamic binary
translation.

1. Introduction
Most dynamic binary translators (e.g. IA32EL [2],

Transmeta [6], Daisy [7], Dynamo[1], etc) use a two-
phase approach to identify and optimize frequently
executed code dynamically. In the first step (profiling
phase), blocks of code are interpreted or translated
without optimization to collect execution frequency
information for the blocks. In the second phase
(optimization phase), frequently executed blocks are

grouped into regions and advanced optimizations are
applied on them. For example, the profiling phase in
Intel’s IA32EL [2] converts each IA32 block quickly into
IPF (Itanium Processor Family) code with instrumentation
for collecting “use” count, the number of times the block
is visited, and “taken” count, the number of times its
conditional branch is taken. When the use count for a
block reaches a retranslation threshold, the block is
registered in a pool of candidate blocks. When a
sufficient number of blocks are registered or when a block
is registered twice, the optimization phase begins to
retranslate the candidate blocks. The optimization phase
uses the ratio taken/use as the branch probability to form
regions (e.g. hyper-block regions and hyper-block loops
[15]) for optimizations and instruction scheduling [11].

This approach implicitly assumes that the execution
profile of each block in the profiling phase (initial profile)
is representative of the block throughout its lifetime. In
particular, a region is selected for optimization with the
assumption that it infrequently takes its side exits and is
thus candidate for advanced optimizations. If this
assumption is incorrect, however, the optimized regions
may often take their side exits, and the program
performance will suffer.

Recent studies [3][12][14][16] have shown that some
programs exhibit multiple phases. For those programs, a
single profiling phase is clearly unable to respond to the
phase changes. However, it is still open whether the
continuous optimization for capturing phase changes is
able to improve performance significant enough to offset
the overhead of continuous profiling and re-optimization
[10][14]. Therefore, we consider the two-phase approach
a practical solution if the initial profile approximates the
profile obtained with the training input in traditional
profile-guided optimization [4].

Since the objective of the training input is to predict
the average program profile, we also compare the initial

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

profile with average program behavior. Notice that the
average program profile does not necessarily represent the
best branch behavior that the optimization phase can
explore. Specifically, the optimization phase may
duplicate blocks to explore correlation between the input
paths to the output paths of the blocks [22], and this
opportunity will not be reflected in the average profile.
Still, we consider the average profile a reasonably good
base for evaluating the initial profile and the profile from
the training input.

In this paper, we will use the term “initial prediction”
to refer to the initial profile as a prediction for the average
program behavior. We will use the IA32EL infrastructure
for this study, and compare the initial prediction of
varying lengths of the retranslation thresholds with the
average program behavior, and use the traditional profile-
guided predictions as the reference. Our result indicates
that, for the SPEC2000 benchmarks, the initial prediction
with retranslation thresholds as small as 500 to 2000 can
have comparable prediction accuracy to the traditional
profile-guided optimizations using the training input.
This is significant, as the initial prediction with these
retranslation thresholds uses only a tiny fraction of
profiling operations (e.g. less than 1%) required for the
training run.

Our results also indicates that, probably due to limited
number of profiling operations, the initial profile seems
inadequate for predicting loop trip count information for
some integer programs and several benchmarks can
benefit from phase-awareness with longer or multiple-
phase profiling.

The rest of the paper is organized as follows. Section
2 outlines the methodology for this study. Section 3
describes the technical issues to implement the
methodology. Section 4 presents the experimental results,
and Section 5 summarizes the paper and discusses the
future directions.

2. Methodology
To evaluate the accuracy of the initial profile, we first

run a program with a retranslation threshold T, e.g. 500,
and output information for regions (i.e. the entry, exits,
and member blocks) that are retranslated by the
optimization phase as well as the “use” and “taken”
values for the blocks in the regions. For blocks that are
not included in any region, we output their use and taken
counts at the end of the program execution. We call the
information the “initial prediction with threshold T”,
denoted INIP(T). We then run the same program without
optimization and output “use” and “taken” count
information for all the blocks at the end of the program
execution. In this case, the “use” and “taken” counts are
the average profile for the entire execution of the

program, and we call the information the “average
behavior of the program”, denoted AVEP. Finally we run
the same program without optimization and with the
training input (notice that INIP(T) and AVEP are obtained
with reference input), and output “use” and “taken” count
values for all the blocks at the end of the program
execution. We call the information INIP(train).

We compare INIP(T) with AVEP to determine
whether or not the INIP(T) accurately approximates
AVEP. We also compare INIP(train) with AVEP to
obtain a reference from the profile with the training input.
From the two comparisons, we can see how the accuracy
of the initial prediction compares to that of the traditional
profile-guided optimization with the training input.

Notice that all the blocks in INIP(T) have similar
execution frequencies (i.e. the “use” counts) between T
and 2*T. That is because the optimization phase waits
until a block is executed T times before placing it in the
candidate pool and stops collecting “use” counts for a
block once it is optimized. Therefore, the relative order
of the block frequencies in INIP(T) is usually not
meaningful. Consequently, many of the well known
techniques for comparing profiles that rely on relative
order of the profile data, such as the “weigh match” and
“key match” [19] and overlapping percentage [8], cannot
easily be applied for comparing INIP(T) and AVEP.

The optimization phase uses the branch probabilities
(the ratio of taken and use counts) of the blocks to form
regions. If the branch probability in the initial phase is
different from that in the late execution, the selected
regions may not perform well. Therefore, we can use
metrics that will only involve branch probabilities in both
INIP(T) and AVEP, and block frequencies in AVEP to
measure the prediction accuracy. In particular, we
measure the standard deviation [9] of branch probabilities
between INIP(T) and AVEP. We also measure the
standard deviation of region completion probabilities
between INIP(T) and AVEP, and the standard deviation
of loop-back probabilities between INIP(T) and AVEP.
We believe that these measurements directly measure the
quality of the profiles, and the comparison of the profiles
using the standard deviations can be easily interpreted
with statistical intuitions.

In addition to computing the standard deviations (SD),
we also collect the range-based matching of branch
probabilities and loop-back probabilities to evaluate the
initial predictions. These measurements provide further
insights into the initial profiles.

2.1. SD of Branch Probabilities
The branch probability (BP) for each block is

computed as the ratio of taken/use of the block. We use

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Sd.BP(T), the standard deviation of the branch
probabilities of INIP(T) (the deviation) from that of
AVEP (the average), to measure the accuracy of the initial
prediction. Assume a program has N blocks in INIP(T)
and AVEP. Assume the branch probability of block i is
BT(i) in INIP(T) and BM(i) in AVEP, and the weight of
the block i is W(i) = block i’s frequency in AVEP, then

Sd.BP(T) =
N

i

N

i

iW

iWiBMiBT

1

1

2

)(

)(*))()((

When Sd.BP(T) is small, e.g. around 0.1, we may
statistically say that INIP(T) represents a reasonably good
prediction of the average program behavior, as the
majority (about 68%) of predicted branch probabilities in
INIP(T) are within 10% of the corresponding branch
probabilities in AVEP, and most (about 95%) of predicted
branch probabilities are within 20% of the corresponding
branch probabilities in AVEP.

We also compute Sd.BP(train), the standard deviation
between INIP(train) and AVEP. Intuitively, if Sd.BP(T)
is close to Sd.BP(train), then the two-phase approach has
similar prediction accuracy as the traditional profile-
guided optimizations using the training input.

2.2. SD of Completion Probability
The completion probability (CP) for a non-loop region

is the probability that the region executes from its entry to
the last block without taking any side exit. A region
selected for optimization should have a high completion
probability, or its performance will suffer when execution
frequently takes the paths not anticipated by the
optimization.

We compute Sd.CP(T), the standard deviation
between the completion probabilities of INIP(T) and
AVEP, to measure the accuracies of the initial predictions
for the average completion probabilities. Assume a
program has M non-loop regions in INIP(T) and AVEP.
Assume the completion probability of region j in INIP(T)
is CT(j), that of the region in AVEP is CM(j), and the
weight of the region is W(j) = the frequency of the entry
block in AVEP, then

Sd.CP(T) =
M

j

M

j

jW

jWjCMjCT

1

1

2

)(

)(*))()((

2.3. SD of Loop-back Probability
The loop-back probability (LP) measures the

likelihood that a loop region branches back to itself,
which is directly related to the average trip count of the

loop. Many advanced loop optimizations relies on
accurate trip count information to determine their
applicability, and the evaluation of loop-back
probabilities are important to these optimizations. Notice
that some of the non-loop regions identified by IA32EL
may contain sub-regions that are loops, and we will not
consider them as loop regions.

We compute Sd.LP(T), the standard deviation
between the loop-back probabilities of INIP(T) and
AVEP, to measure the accuracies of the initial predictions
for the average loop-back probabilities. Assume a
program has L loop regions in INIP(T) and AVEP.
Assume the loop-back probability of loop region j in
INIP(T) is LT(j), that of the loop region in AVEP is
LM(j), and the weight of the region is W(j) = the
frequency of the loop entry block in AVEP, then,

Sd.LP(T) =
L

j

L

j

jW

jWjLMjLT

1

1

2

)(

)(*))()((
.

Notice that we do not compute Sd.CP(train) and
Sd.LP(train) between INIP(train) and AVEP, as
INIP(train) and AVEP are not optimized and thus have no
region information for computing CP and LP. In the
future, we may apply region formation algorithms [5][11]
to construct regions in INIP(train) and compute
Sd.CP(train) and Sd.LP(train).

3. Implementations
In the above, we have assumed that INIP(T) and

AVEP have the same set of blocks and regions. This may
not always be true as INIP(T) may duplicate a block into
multiple regions, while AVEP won’t form regions and
therefore no block will be duplicated. In the following
subsections, we address this and a few other
implementation issues.

3.1. Normalize AVEP to INIP(T)
Figure 1 (a) shows a code segment with two nested

loops from the Mcf SPEC2000 benchmark. The control
flow graph for the code is shown in Figure 1 (b)
(assuming the loop has been converted to a bottom test
loop). Since the block containing Load1 is in both loops,
the optimization phase may duplicate it into the two loop
regions, as shown in Figure 2 (a), which could be the
control flow graph seen in INIP(T). AVEP on the other
hand will see a control flow graph as shown in Figure 2
(b). The blocks in Figure 2 (a) are annotated with the
branch probabilities in INIP(T), and blocks in Figure 2
(b) are annotated with the branch probabilities in AVEP.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

……
While (arcin)
 tail = load1
 If (cond)
 arcin = load2
 continue
 arcin = load3

(a) Source code

Load1

Load2

Load3
b4

b2

b3

pre-head b1

(b) Flow graph
Figure 1. Structure of a loop in price_out_impl of

the Mcf benchmark

In order for AVEP and INIP(T) to have the same
blocks and regions, we normalize AVEP to the same
control flow graph as seen by INIP(T). We refer to the
normalized AVEP as NAVEP. The normalization
duplicates some blocks in AVEP to multiple copies in
NAVEP. We assign to each block in NAVEP the same
branch probability as its original block in AVEP. Figure
3 shows the normalized AVEP with three copies for block
b2. All blocks in Figure 3 are assigned the same branch
probabilities as their original blocks in AVEP.

To compute the standard deviations, we also need to
know the block frequencies for some of the duplicated
blocks in NAVEP, which are the weights in the standard
deviation computation. We cannot simply use the block
frequency of the block in AVEP for all the duplicated
blocks in NAVEP. Otherwise the weights for the
duplicated blocks in NAVEP are higher than their real
values since the sum of the block frequencies of all the
blocks in NAVEP corresponding to the same block in
AVEP should equal to the block frequency of the block in
AVEP.

b2

b3

b4

b2’

b2’’

.20 .80

.70 .30

.65 .35

b1

.90 .10

(a) CFG of INIP(T)

b2

b3

b4

.023 .977

.88 .12

b1

(b) CFG AVEP
Figure 2. CFG for INIP(T) and AVEP

b2

b3

b4

b2’

b2’’

.88 .12

.88 .12

.88 .12

b1

.977 .023

Figure 3. CFG for NAVEP

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Sd.BP(T)=
60004300044000600010001000

6000*)20.88(.43000*)70.88(.44000*)90.977(.1000*)65.88(. 2222
= 045.0 = 0.21

Sd.CP(T) = 0
1000

1000*)0.10.1(2

Sd.LP(T) =
600044000

6000*)80.012.0(44000*)70.0*90.088.0*977.0(22
 = 076.0 0.27

Figure 5. Calculations of standard deviations for the sample program

b2

b3

b4

.023 .977

.88 .12

b1 1000

50000

6000

44000

(a) Block Frequencies for AVEP

b2

b3

b4

b2’

b2’’

.88 .12

.88 .12

.88 .12

b1 1000

1000

1.0

6000

6000

.977 .023

44000

44000*0.977 = 43000

(b) Block Frequencies for NAVEP
Figure 4. Compute block frequencies for

duplicate blocks

We determine the block frequencies for the duplicated
blocks by propagating the block frequencies from the
non-duplicated blocks to all the duplicated blocks based
on the branch probability assignment. For example, in
Figure 4 (a), block b1, b3, and b4 are not duplicated.

Starting from the block frequencies of these blocks in
AVEP (assuming the frequencies are 1000, 6000, 44000
respectively), we can obtain the block frequencies for the
three copies of the block b2 in NAVEP, as shown in
Figure 4 (b), where the frequencies for non-duplicated
blocks are shown in bold face while the propagated
frequencies for the duplicated blocks are in italic. The
sum of the frequencies for the three copies of the block b2
equals to 50000, the same as the frequency of the block
b2 in AVEP. Notice that although in this example the
region entry blocks are not duplicated, in general, it is
possible that a region entry block is a duplicated block.

We use a general method known as the Markov
Modeling of Control Flow [18] to determine the block
frequencies for the duplicated blocks. In this method, we
first formulate a system of linear equations, in which the
frequencies of the non-duplicated blocks are the constant
coefficients, and the frequencies of the duplicated blocks
are the unknowns. From the system of the linear
equations, we can find the solutions for the unknowns,
which are the block frequencies of the duplicated blocks.
Now that NAVEP has the same set of blocks as INIP(T)
and all the blocks in NAVEP are assigned both branch
probabilities and block frequencies, we can compute the
standard deviations. With respect to the INIP(T) in
Figure 2 (a) and the NAVEP in Figure 4 (b), we can
compute Sd.BP(T), the standard deviation of branch
probabilities for the 4 blocks, Sd.CP(T), the standard
deviation of completion probabilities for the non-loop
region containing blocks b1 and b2, and Sd.LP(T), the
standard deviation of loop-back probabilities for the two
loop regions, as shown in Figure 5.

In the above example, we have a simple non-loop
region whose completion probability is trivially
computed. Each of the two loop regions has only one
execution path from the loop entry back to itself, thus the
loop-back probability is easily computed as the
probability of the execution path. In general, however,
non-loop or loop regions may be more complicated. We
briefly describe the procedure for computing completion
probability and loop-back probability in the next two
subsections.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

3.2. Compute Completion Probability
Given a non-loop region such that each block is

assigned a branch probability, the completion probability
of the region is the likelihood that the execution starting at
the region entry reaches the last block of the region. As
an example, we take a look at the region shown in Figure
6. When the execution starts at block b5, the completion
probability of the region is the probability of the
execution arriving at block b8. For a region without side
exits, the completion probability is always 1. The side
exit branches reduce the completion probability of a
region.

A general approach for computing completion
probability is to assume the entry block of the region has
an execution frequency of 1, and propagate that frequency
all the way to the last block of the region. Then the
frequency of the last block is the completion probability
of the region. For the example in Figure 6, with the
assumption that block b5 has a frequency of 1, block b6
will have a frequency of 0.4, and block b7 has a
frequency of 0.6, and the frequency of block b8 will be
0.4 * 0.8 + 0.6 * 0.9 = 0.86. Therefore, the completion
probability of the region is 0.86.

b5

b8

b6 b7

.4 .6

.2 .8 .9 .1

CP=0.86

Figure 6. Completion probability for a non-loop
region

3.3. Compute Loop-back Probability
Given a loop region such that each block is assigned

branch probabilities, the loop-back probability of the
region is the likelihood that the execution starting at the
loop entry reaches back to the same loop entry block. If
we create a dummy block such that the loop back edges
are redirected to the dummy block instead of the entry
block, then we can compute the loop-back probability by
assuming the entry block of the loop has an execution
frequency of 1, propagating the frequency all the way to
the dummy block. The frequency of the dummy block
will be the loop-back probability. An example is shown
in Figure 7. The original loop is shown in (a), and the
CFG with back edges directed to the dummy node is
shown in (b). With the assumption that block b5 has a

frequency of 1, block b7 will have a frequency of 0.6,
block b8 will have a frequency of 0.38, and the dummy
node will have frequency of 0.38*0.9 + 0.6*0.9 = 0.886.
Therefore, the loop-back probability of the loop region is
0.886.

b5

b8

b6 b7

.4 .6

.2 .8 .1 .9

.1 .9
LP=0.886

dummy

b5

b8

b6 b7

.4 .6

.2 .8 .1 .9

.1 .9

(a) (b)
Figure 7. Loop-back probability for a loop region

Notice that, in the above computation of standard
deviations, some approximation may occur when we
normalize the average profile to an initial profile, for
determining the frequencies of the duplicated region/loop
head blocks. Our experience indicates that most head
blocks are not duplicated and therefore the approximation
does not occur often. Furthermore, the comparison
between the training profile and the average profile does
not involve any approximation. As the result, the
approximation would bias against the comparison
between the initial profile and the training profile. Since
this paper argues in favor of the initial profile, the bias
against the initial profile should not be an issue.

4. Experimental results
We report our experimental results using IA32EL for

the SPEC2000 INT and FP benchmarks, running on a
900MHz Itanium2 machine with Microsoft Windows
operating system. INIP(T) is run with retranslation
thresholds T = 100, 200, 500, 1k, 2K, 5K, 10K, 20K, 40K,
80K, 160K, 1M and 4M. Both INIP(T) and AVEP are
run with the reference input (or the last reference input for
benchmarks with multiple reference inputs). INIP(train)
is obtained running with the training input.

After the information for INIP(T), INIP(train) and
AVEP are collected into files, we use an off-line tool to
analyze the data and calculate the standard deviations.
The analysis tool uses the solver for system of linear
equations in the Intel’s Math Kernel Library [13] to
propagate block frequencies for the duplicated blocks in
NAVEP and compute CP and LP for regions in INIP(T)
and AVEP.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

tra
in 10

0
20

0
50

0 1k 2k 5k 10
k

20
k

40
k

80
k

16
0k 1M 4M

thresholds T

Sd
.B

P(
T)

Sd.BP INT Sd.BP FP

Figure 8. Standard deviations of branch
probabilities

4.1. Accuracy of Branch Probabilities
Figure 8 shows the standard deviations of branch

probabilities with the training input (Sd.BP(train)) and
with the reference input for different retranslation
thresholds (Sd.BP(T)). The upper line is for the average
over the 12 INT benchmarks. Although the initial
prediction of branch probabilities with retranslation
thresholds of 100 to 1k are less accurate than the training
input, the initial prediction with retranslation thresholds
2k or higher is similar or more accurate than the
prediction by the training input. The increase of
Sd.BT(T) when T goes from 5k to 10k is due to a phase
change in Mcf program (we will discuss a little more
about Mcf when we show the results for individual
benchmarks).

The lower line is for the averages over the 14 FP
benchmarks. The initial prediction is better than the
prediction by the training input when the retranslation
threshold is 500 or higher. This supports the conclusion
that programs running under IA32EL with a relatively
small retranslation threshold should be able perform
reasonably well comparing to the static binaries compiled
by the static compiler with profile-guided optimization
using the training input [1].

Individual benchmarks, however, show significantly
higher or lower accuracy with the initial prediction than
the prediction by the training input. Figure 9 shows
Sd.BP(T) for INT benchmarks. For Perlbmk, Twolf,
Bzip2, and Eon, the initial prediction with retranslation
threshold of 100 or higher is more accurate than the
training input. In particular, the initial prediction for
Perlbmk is significantly better than the training input. For
several other benchmarks, the initial prediction is less
accurate than the training input. Noticeably, Mcf and
Gzip have much worse prediction accuracy than the
training input, even with the retranslation threshold as
high as 4M. Also, the Mcf benchmark seems to have
phase changes between thresholds 5K and 10K and also
between 160K and 4M, and therefore the initial prediction
could not predict its branch probability accurately.
Furthermore, half of the benchmarks have Sd.BP(T)
higher than 0.1, even with a retranslation threshold up to
160K. For these benchmarks, phase awareness with more
profiling phases may improve the accuracy.

Compiler optimizations often use a branch probability
threshold for identifying likely taken branches to form
regions, e.g. the “minimum branch probability” of 70% in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

train 100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

Sd
.B

P(
T)

gzip

vpr

cc1

mcf

crafty

parser

eon

perlbmk

gap

vortex

bzip2

twolf

Figure 9. Standard deviations of branch probabilities for SPEC2000 INT

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

[5]. A small difference between branch probabilities of
INIP(T) and AVEP could be significant if the branch
probabilities are on different sides of the threshold. For
example, the difference between 68% in INIP(T) and 78%
in AVEP may cause the optimizer to classify the branch
as not likely to be taken (since 68% of taken probability
in INIP(T) is less than the threshold), even though the
branch is frequently taken in AVEP. On the other hand,
the difference between 72% in INIP(T) and 99% in AVEP
would not affect the optimization decision at all. To see
how the branch probabilities may affect optimizations, we
use the following three ranges, [0-.3), [.3-.7], and (.7-1.0],
of the branch probabilities to compare the predictions.
Namely, a branch probability in INIP(T) “matches” the
corresponding probability in AVEP if and only if their
values are in the same range. For example, we may
consider 0.99 and 0.76 a match, while considering 0.68
and 0.78 a mismatch.

0%

2%

4%

6%

8%

10%

12%

14%

16%

train 100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

B
ra

nc
h

pr
ob

ab
ili

ty
 m

is
m

at
ch

 ra
te

INT FP

Figure 10. Branch probability mismatch rates

Figure 10 shows the “mismatch” rate (weighted

average with block frequencies in AVEP) of the branch
probabilities in INIP(T) and those in AVEP. For INT
benchmarks, the branch probabilities predicted with the
training input matches those in AVEP reasonably well
(mismatches only about 9%). We need a threshold of 2k
or above to achieve the similar or better matching score.
For FP benchmarks, a retranslation threshold of 500 is
sufficient to bring out prediction accuracy similar to that
by the training input. Overall, FP benchmarks are much
easier to predict accurately than the INT benchmarks.

Figure 11 shows the mismatches for individual INT
benchmarks. The training input predicts for Perlbmk
very badly, with a mismatch rate of about 50%. For Mcf,
INIP(T) matches AVEP very poorly, with a mismatch rate
of above 30% for most of the thresholds. For Crafty,
INIP(T) mismatches AVEP for about 18% of the
branches. Gzip is an interesting benchmark. The
mismatch rates are high (above 40%) with retranslation
threshold at 500 or below, and then drop sharply to about
22% for retranslation thresholds of 1k and above. For the
rest of the benchmarks, INIP(T) matches AVEP
reasonably well. Notice that most of the lines are
relatively flat, except those for Gzip, Gap, and Parser.
This indicates that increasing the retranslation threshold
dramatically to a large value would only significantly
increase the profile accuracy for a few benchmarks.

Figure 12 shows the mismatches for individual FP
benchmarks. The training input predicts Lucas and Apsi
poorly, with a mismatch rate of 25% and 20%
respectively. INIP(T) predicts Wupwise poorly, with a
mismatch rate of 20% until the retranslation threshold
reaches 1M. For rest of the benchmarks, INIP(T)
matches AVEP reasonably well (with mismatch rates less
than 10%).

0%

10%

20%

30%

40%

50%

60%

train 100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

B
P

ra
ng

e
m

is
m

at
ch

 ra
te

gzip
vpr
cc1
mcf
crafty
parser
eon
perlbmk
gap
vortex
bzip2
twolf

Figure 11. Branch probability mismatch rates (INT benchmarks)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

4.2. Accuracy of Completion Probabilities
Figure 13 shows the standard deviation of completion

probabilities (Sd.CP(T)). For INT benchmarks, the
average Sd.CP(T) is higher than the average Sd.BP(T) for
INT shown in Figure 8. This underlines the fact that
completion probabilities are much harder to predict
accurately than branch probabilities for control intensive
INT programs. Even when the branch probabilities of
most of the blocks in a region are predicted correctly, a
single mis-predicted branch in the region may change the
region’s completion probability dramatically. A solution
would be to continuously monitor the side exits of each
region and re-optimize the region when its completion
probability changes significantly. Although the average
Sd.CP(T) for FP is lower than the average Sd.BP(T) for
FP shown in Figure 8, most of the FP benchmarks are
loop intensive and only a few easily predictable non-loop
regions are formed.

4.3. Accuracy of Loop-back Probabilities
Figure 14 shows the standard deviation of loop-back

probabilities (Sd.LP(T)). As expected, the average
Sd.LP(T) for FP is noticeably higher than the average
Sd.BP(T) for FP shown in Figure 8. Figure 14 also
shows that the Sd.LP(T) for FP steadily decreases as
retranslation thresholds increases. This suggests that
longer profiling period may help loop optimizations.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

Sd
.C

P(
T)

Sd.CP INT Sd.CP FP

Figure 13. Standard deviation of completion
probabilities

Compiler optimizations usually rely on trip count
information to determine their applicability. We may
classify loops (single or multiple levels) into the
following three groups based on their trip count ranges,
and consider a prediction a match if and only if the
predicted loop trip count in INIP(T) is in the same range
as that in AVEP.

Low trip count loops: the loops with trip count less
than 10. These loops may be candidates for loop peeling
optimizations but neither software pipelining nor data
prefetching may be applied profitably. Since LP = (T-
1)/T (see [20]), where T is the loop trip count, loops with
LP in the range of [0..0.9) are low trip count loops.

0%

5%

10%

15%

20%

25%

30%

train 100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

w upw ise

sw im

mgrid

applu

mesa

galgel

art

equake

facerec

ammp

lucas

fma3d

sixtrack

apsi

Figure 12. Branch probability mismatch rates (FP benchmarks)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

Sd
.L

P(
T)

Sd.LP INT Sd.LP FP

Figure 14. Standard deviation of loop-back
probabilities

0%

5%

10%

15%

20%

25%

30%

100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

lo
op

-b
ac

k
pr

ob
ab

ili
ty

 m
is

m
at

ch
 ra

te

INT FP

Figure 15. Loop-back probability mismatch rate

Median trip count loops: the loops with trip count
between 10 and 50. These loops are possible candidates
for software pipelining but not for data prefetching.
Loops with LP in the range of [0.9..0.98] are median trip
count loops.

High trip count loops: the loops with trip count more
than 50. These loops are good candidates for both
software pipelining and data prefetching. Loops with LP
in the range of (0.98..1.0) are high trip count loops.

Figure 15 shows the average “mismatch” rate
(weighted by the loop entry block frequencies in AVEP)
between loop-back probability in INIP(T) and that in
AVEP. For INT benchmarks, the initial prediction does
not predict the ranges of the loop trip count accurately
until the retranslation threshold reaches a very high value
(e.g. 160k). Thus we will need additional mechanisms to
obtain accurate trip count information for advanced loop
optimizations. One way is to continuously collect trip
count information in the optimized code and adjust loop
optimization when trip count characteristic changes. The
profiling code for collecting trip count information should
not impact the performance of the optimized code as

lightweight instrumentation is possible. For FP
benchmarks, the initial prediction predicts the ranges of
the loop trip count accurately even with a low
retranslation threshold of 100.

Figure 16 shows the “mismatch” rate with loop-back
probabilities in INIP(T) and that in AVEP for individual
SPEC2000 INT benchmarks. The loop classification for
Mcf is completely incorrect until the retranslation
threshold reaches 10k and above. Our experiment with
data prefetching confirms this observation: the high trip
count loops identified in Mcf by the initial profile with
small retranslation thresholds turns out to be low trip
count loops late in the program’s execution and the loops
having actual high trip counts usually have low trip
counts during the initial execution. The classification for
Vpr and Cc1 is incorrect more than 50% of the time until
the retranslation threshold reaches 80k and above.

0%

20%

40%

60%

80%

100%

120%

10
0

20
0

50
0 1k 2k 5k 10

k
20

k
40

k
80

k
16

0k 1M 4M

thresholds T

lo
op

-b
ac

k
pr

ob
ab

ili
ty

 m
is

m
at

ch
 ra

te

gzip
vpr
cc1

mcf
crafty

parser
eon
perlbmk

gap
vortex

bzip2
twolf

Figure 16. Loop-back probability mismatch rate
(INT benchmarks)

4.4. Performance Impact of Initial Profiles
Although our study correlates retranslation thresholds

with prediction accuracy, the prediction accuracy alone
may not be sufficient to determine the performance of the
programs using the profile. Other factors, such as the ILP
available in the code, the cost of optimization, and the
length of execution of the optimized code, etc, may also
impact the ultimate performance.

Figure 17 shows the relative performance of
SPEC2000 running with the last ref input for different
retranslation thresholds (higher is better). The base
performance is obtained the run with the retranslation
threshold of 1 (i.e. to optimize all blocks that are executed
at least once). For the SPEC2000 INT benchmarks (see
the line marked with int), the best performance is obtained
when the retranslation threshold is around 1k to 5k, which
out-performs the base by nearly 18%. The Perlbmk
benchmark has the most dramatic performance
improvement with accurate initial profile. The line
marked with “int no perl” is the relative performance of

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

the SPEC2000 INT without the Perlbmk benchmark. In
this case, the best performance is obtained around the
thresholds of 1k to 5k, which out-performs the base by
about 7%

For the FP benchmarks, the best performance is
obtained when the retranslation threshold is at 50, 200, or
2k, which out-performs the base by about 2%.

Although the initial prediction with a high
retranslation threshold (e.g. 1M and above) is very
accurate, the corresponding performance is significantly
worse than a less accurate initial profile (e.g. with a
retranslation threshold of 2k). This indicates that in a
two-phase dynamic binary translator like IA32EL, it is
important to optimize a program early, even with less
accurate initial profile, to benefit from the optimized
execution.

0.7

0.8

0.9

1.0

1.1

1.2

1 20 50 10
0

20
0

50
0 1k 2k 5k 10
k

20
k

40
k

80
k

16
0k 1m 4m

int int no perl fp

Figure 17. Performance impact of initial profiles

0

0.5

1

1.5

2

train 100 200 500 1k 2k 5k 10k 20k 40k 80k 160k 1M 4M

thresholds T

pr
of

ili
ng

 o
pe

ra
tio

ns
 (t

ra
in

=1
)

INT FP

Figure 18. Profiling operations required for
training run and for initial profiles

4.5. Overhead of Initial Profiling
Figure 18 shows the total number of profiling

operations (sum of all “use” and “taken” count values) for
the training run and for the initial profiles (normalized
such that training run has a value of 1). The initial
prediction with the thresholds of 500 to 2000 takes less
than 1% of the profiling operations required for the
training run. The training input takes the similar number
of profiling operations as the initial profile with a

retranslation threshold of more than 1M. Clearly, the
dynamic binary translator can obtain similar or more
accurate profile with a much shorter profiling period than
the static compiler with the training input, due to the
benefit of using the early period of same input to predict
the future behavior.

5. Summary and Future Work
Our study indicates that the initial prediction with 500

to 2k retranslation thresholds has the accuracy
comparable to the traditional profile-guided optimizations
using the training input. Specifically, for INT
benchmarks, the initial profile obtained with a
retranslation threshold of 2000 has the similar prediction
accuracy to that by the training input, while for FP
benchmarks, the initial profile with a retranslation
threshold of 500 is sufficient to achieve the similar
prediction accuracy by the training input.

Several benchmarks also show phase behavior and the
single profiling phase does not capture the average
program behavior accurately. For those benchmarks,
longer profiling periods or selective continuous profiling
(especially for CP and LP) is beneficial to predict the
average program behavior more accurately. Effectively
monitoring region side exits to trigger retranslation and
phase adaptation looks promising. Inexpensive
instrumentation for continuous collection of loop trip
count for advanced loop optimizations is possible [21].
Furthermore, retranslation thresholds should be chosen
selectively, as different benchmarks (e.g. INT vs. FP)
react to retranslation thresholds differently.

In the future, we may continue work in the following
areas:

Characterize the mis-predicted branches and regions.
It is an interesting subject to develop heuristics so
that the branches and regions that cannot be predicted
accurately by the initial profile may be selected for
continuous profiling.
Develop heuristics to select retranslation thresholds
for different benchmarks or even for different
portions of a benchmark. Although our study
correlates retranslation thresholds with prediction
accuracy, the prediction accuracy alone may not be
sufficient to determine the optimal retranslation
threshold. Other factors, such as the ILP available in
the code, the cost of optimization, and the length of
execution of the optimized code, etc, may also affect
the optimal retranslation threshold.
Construct regions in INIP(train) and compute Sd.CP
and Sd.LP between INIP(train) and AVEP to
compare the initial prediction of CP and LP with the
prediction by the training input.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Extend the study to compare the initial profile with
the specialized (duplicated) program profile in
addition to the average program profile. One
challenge is to produce comparable specialized
program profiles with different inputs (ref and train)
and different retranslation thresholds.
Apply the methodology of this study to real world
applications. It will be more challenging to study
real world applications, as they may have no training
inputs for comparison.

6. Acknowledgements
We would like to thank the IA32EL team at Intel for

developing the IA32EL infrastructure used in this
experiment and providing us with many technical insights
about the internals of the dynamic binary translator. We
also appreciate the support from the MKL team at Intel
for helping us to obtain and use the MKL library.

7. References
[1] Bala, V.; E. Duesterwald, and S. Banerjia.
“Transparent Dynamic Optimization.” Technical Report
HPL-1999-77, Hewlett Packard Labs, June 1999.
[2] Baraz, Leonid; Tevi Devor, Orna Etzion, Shalom
Goldenberg, Alex Skaletsky, Yun Wang and Yigal
Zemach, “IA-32 Execution Layer: a two-phase dynamic
translator designed to support IA-32 applications on
Itanium®-based systems,” MICRO-36, 2003.
[3] Barnes, R. D.; E. M. Nystrom, M. C. Merten, W.M.
W. Hwu, “Compilation and run-time systems: Vacuum
packing: extracting hardware-detected program phases for
post-link optimization,” MICRO-35, Nov. 2002.
[4] Chang, Pohua P.; Scott A. Mahlke, Wen-mei W.
Hwu, “Using profile information to assist classic code
optimizations,” Software—Practice & Experience, v.21
n.12, p.1301-1321, Dec. 1991.
[5] Chang, Pohua P.; Wen-mei W. Hwu, "Trace
Selection For Compiling Large C Application Programs
To Microcode," MICRO-21, November 30-Dec. 2, 1988.
[6] Dehnert, J.C.; Grant, B.K.; Banning, J.P.; Johnson,
R.; Kistler, T.; Klaiber, A.; Mattson, J.; “The Transmeta
code morphing software: using speculation, recovery, and
adaptive retranslation to address real-life challenges,”
CGO-2003. Mar 2003, Pages 15 –24.
[7] Ebcioglu, Kemal; and Erik R. Altman. "DAISY:
Dynamic Compilation for 100% Architectural
Compatibility, ISCA-24, June 1997.
[8] Feller, P. T.; “Value Profiling for Instructions and
Memory Locations, “M.S. Thesis CS98-581, University
of California at San Diego, April 1998.

[9] Freedman, David; Robert Pisani, Roger Purves, Ani
Adhikari, Statistics, 2nd Edition, W.W. Norton &
Company, New York, 1991.
[10] Grant, Brian; Markus Mock, Matthai Philipose, Craig
Chambers, Susan J. Eggers, “The benefits and costs of
DyC's run-time optimizations,” ACM Transactions on
Programming Languages and Systems (TOPLAS), Sept.
2000.
[11] Hank, R.; W. Hwu, and B. Rau. “Region-Based
Compilation: An Introduction and Motivation,” MICRO-
28, pp. 158–168, November 1995.
[12] Hsu, W.C.; H. Chen; P.C. Yew; D.Y. Chen; “On the
predictability of program behavior using different input
data sets,” Interact-6, Feb. 2002.
[13] Intel, http://www.intel.com/software/products/mkl/,
Math Kernel Library.
[14] Kistler, Thomas; Michael Franz “Continuous
program optimization: A case study.” TOPLAS 25(4):
500-548 (2003).
[15] Mahlke, Scott A.; David C. Lin, William Y. Chen,
Richard E. Hank, Roger A. Bringmann, “Effective
compiler support for predicated execution using the
hyperblock,” MICRO-25, Dec. 1992
[16] Sherwood, T.; Suleyman Sair, and Brad Calder,
“Phase Tracking and Prediction” ISCA-30, June 2003.
[17] Smith, Michael D. "Overcoming the Challenges to
Feedback-Directed Optimization," Proc. ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and
Optimization, invited lecture, Boston, MA, Jan. 18, 2000.
[18] Wagner, Tim A., Vance Maverick, Susan L. Graham,
Michael A. Harrison, “Accurate static estimators for
program optimization,” PLDI’94, June 1994.
[19] Wall, D. W. "Predicting program behavior using real
or estimated profiles," PLDI’91, May 1991, ACM
SIGPLAN Notices, Volume 26 Issue 6.
[20] Wu, Y., J. Larus, “Static Branch Frequency and
Program Profile Analysis,” MICRO-27. Nov. 1994.
[21] Wu, Y.; M. Breternitz, T. Devor, “Continuous Trip
Count Profiling for Loop Optimizations in Two-phase
Dynamic Binary Translators,” Interact-8, in conjunction
with HPCA-10, Feb. 2004.
[22] Young, Cliff, Michael D. Smith, “Improving the
accuracy of static branch prediction using branch
correlation,” ASPLOS-6, Volume 29, 28 Issue 11, 5, Nov.
1994

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

