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Abstract
Dynamic binary translators use a two-phase approach 

to identify and optimize frequently executed code 
dynamically.  In the first step (profiling phase), blocks of 
code are interpreted or quickly translated to collect 
execution frequency information for the blocks.  In the 
second phase (optimization phase), frequently executed 
blocks are grouped into regions and advanced 
optimizations are applied on them.   

This approach implicitly assumes that the initial 
profile of each block is representative of the block 
throughout its lifetime. This study investigates the ability 
of the initial profile to predict the average program 
behavior. We compare the predicted behavior of varying 
lengths of the initial execution with the average program 
behavior for the whole program execution, and use the 
prediction from the training input as the reference.  Our 
result indicates that, for the SPEC2000 benchmarks, even 
very short initial profiles have comparable prediction 
accuracy to the traditional profile-guided optimizations 
using the training input, although the initial profile is 
inadequate for predicting loop trip count information for 
some integer programs and several benchmarks can 
benefit from phase-awareness during dynamic binary 
translation.   

1. Introduction 
Most dynamic binary translators (e.g. IA32EL [2], 

Transmeta [6], Daisy [7], Dynamo[1], etc) use a two-
phase approach to identify and optimize frequently 
executed code dynamically.  In the first step (profiling 
phase), blocks of code are interpreted or translated 
without optimization to collect execution frequency 
information for the blocks.  In the second phase 
(optimization phase), frequently executed blocks are 

grouped into regions and advanced optimizations are 
applied on them.  For example, the profiling phase in 
Intel’s IA32EL [2] converts each IA32 block quickly into 
IPF (Itanium Processor Family) code with instrumentation 
for collecting “use” count, the number of times the block 
is visited, and “taken” count, the number of times its 
conditional branch is taken.  When the use count for a 
block reaches a retranslation threshold, the block is 
registered in a pool of candidate blocks.  When a 
sufficient number of blocks are registered or when a block 
is registered twice, the optimization phase begins to 
retranslate the candidate blocks. The optimization phase 
uses the ratio taken/use as the branch probability to form 
regions (e.g. hyper-block regions and hyper-block loops 
[15]) for optimizations and instruction scheduling [11]. 

This approach implicitly assumes that the execution 
profile of each block in the profiling phase (initial profile)
is representative of the block throughout its lifetime.  In 
particular, a region is selected for optimization with the 
assumption that it infrequently takes its side exits and is 
thus candidate for advanced optimizations.  If this 
assumption is incorrect, however, the optimized regions 
may often take their side exits, and the program 
performance will suffer.   

Recent studies [3][12][14][16] have shown that some 
programs exhibit multiple phases.  For those programs, a 
single profiling phase is clearly unable to respond to the 
phase changes.  However, it is still open whether the 
continuous optimization for capturing phase changes is 
able to improve performance significant enough to offset 
the overhead of continuous profiling and re-optimization 
[10][14].  Therefore, we consider the two-phase approach 
a practical solution if the initial profile approximates the 
profile obtained with the training input in traditional 
profile-guided optimization [4].   

Since the objective of the training input is to predict 
the average program profile, we also compare the initial 
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profile with average program behavior.  Notice that the 
average program profile does not necessarily represent the 
best branch behavior that the optimization phase can 
explore.  Specifically, the optimization phase may 
duplicate blocks to explore correlation between the input 
paths to the output paths of the blocks [22], and this 
opportunity will not be reflected in the average profile.  
Still, we consider the average profile a reasonably good 
base for evaluating the initial profile and the profile from 
the training input. 

In this paper, we will use the term “initial prediction” 
to refer to the initial profile as a prediction for the average 
program behavior. We will use the IA32EL infrastructure 
for this study, and compare the initial prediction of 
varying lengths of the retranslation thresholds with the 
average program behavior, and use the traditional profile-
guided predictions as the reference.  Our result indicates 
that, for the SPEC2000 benchmarks, the initial prediction 
with retranslation thresholds as small as 500 to 2000 can 
have comparable prediction accuracy to the traditional 
profile-guided optimizations using the training input.  
This is significant, as the initial prediction with these 
retranslation thresholds uses only a tiny fraction of 
profiling operations (e.g. less than 1%) required for the 
training run.   

Our results also indicates that, probably due to limited 
number of profiling operations, the initial profile seems 
inadequate for predicting loop trip count information for 
some integer programs and several benchmarks can 
benefit from phase-awareness with longer or multiple-
phase profiling.   

The rest of the paper is organized as follows.  Section 
2 outlines the methodology for this study.  Section 3 
describes the technical issues to implement the 
methodology.  Section 4 presents the experimental results, 
and Section 5 summarizes the paper and discusses the 
future directions. 

2. Methodology
To evaluate the accuracy of the initial profile, we first 

run a program with a retranslation threshold T, e.g. 500, 
and output information for regions (i.e. the entry, exits, 
and member blocks) that are retranslated by the 
optimization phase as well as the “use” and “taken” 
values for the blocks in the regions.  For blocks that are 
not included in any region, we output their use and taken 
counts at the end of the program execution.  We call the 
information the “initial prediction with threshold T”, 
denoted INIP(T).  We then run the same program without 
optimization and output “use” and “taken” count 
information for all the blocks at the end of the program 
execution. In this case, the “use” and “taken” counts are 
the average profile for the entire execution of the 

program, and we call the information the “average 
behavior of the program”, denoted AVEP.  Finally we run 
the same program without optimization and with the 
training input (notice that INIP(T) and AVEP are obtained 
with reference input), and output “use” and “taken” count 
values for all the blocks at the end of the program 
execution.  We call the information INIP(train). 

We compare INIP(T) with AVEP to determine 
whether or not the INIP(T) accurately approximates 
AVEP.  We also compare INIP(train) with AVEP to 
obtain a reference from the profile with the training input.  
From the two comparisons, we can see how the accuracy 
of the initial prediction compares to that of the traditional 
profile-guided optimization with the training input.   

Notice that all the blocks in INIP(T) have similar 
execution frequencies (i.e. the “use” counts) between T 
and 2*T.  That is because the optimization phase waits 
until a block is executed T times before placing it in the 
candidate pool and stops collecting “use” counts for a 
block once it is optimized.  Therefore, the relative order 
of the block frequencies in INIP(T) is usually not 
meaningful.  Consequently, many of the well known 
techniques for comparing profiles that rely on relative 
order of the profile data, such as the “weigh match” and 
“key match” [19] and overlapping percentage [8], cannot 
easily be applied for comparing INIP(T) and AVEP.    

The optimization phase uses the branch probabilities 
(the ratio of taken and use counts) of the blocks to form 
regions.  If the branch probability in the initial phase is 
different from that in the late execution, the selected 
regions may not perform well.  Therefore, we can use 
metrics that will only involve branch probabilities in both 
INIP(T) and AVEP, and block frequencies in AVEP to 
measure the prediction accuracy.  In particular, we 
measure the standard deviation [9] of branch probabilities 
between INIP(T) and AVEP.  We also measure the 
standard deviation of region completion probabilities 
between INIP(T) and AVEP, and the standard deviation 
of loop-back probabilities between INIP(T) and AVEP.  
We believe that these measurements directly measure the 
quality of the profiles, and the comparison of the profiles 
using the standard deviations can be easily interpreted 
with statistical intuitions. 

In addition to computing the standard deviations (SD), 
we also collect the range-based matching of branch 
probabilities and loop-back probabilities to evaluate the 
initial predictions.  These measurements provide further 
insights into the initial profiles.   

2.1. SD of Branch Probabilities 
The branch probability (BP) for each block is 

computed as the ratio of taken/use of the block.  We use 
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Sd.BP(T), the standard deviation of the branch 
probabilities of INIP(T) (the deviation) from that of 
AVEP (the average), to measure the accuracy of the initial 
prediction.  Assume a program has N blocks in INIP(T) 
and AVEP.  Assume the branch probability of block i is 
BT(i) in INIP(T) and BM(i) in AVEP, and the weight of 
the block i is W(i) = block i’s frequency in AVEP, then 

Sd.BP(T) = 
N

i

N

i

iW

iWiBMiBT

1

1

2

)(

)(*))()((

When Sd.BP(T) is small, e.g. around 0.1, we may 
statistically say that INIP(T) represents a reasonably good 
prediction of the average program behavior, as the 
majority (about 68%) of predicted branch probabilities in 
INIP(T) are within 10% of the corresponding branch 
probabilities in AVEP, and most (about 95%) of predicted 
branch probabilities are within 20% of the corresponding 
branch probabilities in AVEP.   

We also compute Sd.BP(train), the standard deviation 
between INIP(train) and AVEP.  Intuitively, if Sd.BP(T) 
is close to Sd.BP(train), then the two-phase approach has 
similar prediction accuracy as the traditional profile-
guided optimizations using the training input.   

2.2. SD of Completion Probability 
The completion probability (CP) for a non-loop region 

is the probability that the region executes from its entry to 
the last block without taking any side exit.  A region 
selected for optimization should have a high completion 
probability, or its performance will suffer when execution 
frequently takes the paths not anticipated by the 
optimization.   

We compute Sd.CP(T), the standard deviation 
between the completion probabilities of INIP(T) and 
AVEP, to measure the accuracies of the initial predictions 
for the average completion probabilities.  Assume a 
program has M non-loop regions in INIP(T) and AVEP.  
Assume the completion probability of region j in INIP(T) 
is CT(j), that of the region in AVEP is CM(j), and the 
weight of the region is W(j) = the frequency of the entry 
block in AVEP, then  

Sd.CP(T) = 
M

j
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2.3. SD of Loop-back Probability 
The loop-back probability (LP) measures the 

likelihood that a loop region branches back to itself, 
which is directly related to the average trip count of the 

loop. Many advanced loop optimizations relies on 
accurate trip count information to determine their 
applicability, and the evaluation of loop-back 
probabilities are important to these optimizations.  Notice 
that some of the non-loop regions identified by IA32EL 
may contain sub-regions that are loops, and we will not 
consider them as loop regions. 

We compute Sd.LP(T), the standard deviation 
between the loop-back probabilities of INIP(T) and 
AVEP, to measure the accuracies of the initial predictions 
for the average loop-back probabilities.  Assume a 
program has L loop regions in INIP(T) and AVEP.  
Assume the loop-back probability of loop region j in 
INIP(T) is LT(j), that of the loop region in AVEP is 
LM(j), and the weight of the region is W(j) = the 
frequency of the loop entry block in AVEP, then, 

Sd.LP(T) = 
L

j

L

j
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jWjLMjLT
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Notice that we do not compute Sd.CP(train) and 
Sd.LP(train) between INIP(train) and AVEP, as 
INIP(train) and AVEP are not optimized and thus have no 
region information for computing CP and LP. In the 
future, we may apply region formation algorithms [5][11] 
to construct regions in INIP(train) and compute 
Sd.CP(train) and Sd.LP(train). 

3. Implementations
In the above, we have assumed that INIP(T) and 

AVEP have the same set of blocks and regions.  This may 
not always be true as INIP(T) may duplicate a block into 
multiple regions, while AVEP won’t form regions and 
therefore no block will be duplicated.  In the following 
subsections, we address this and a few other 
implementation issues. 

3.1. Normalize AVEP to INIP(T) 
Figure 1 (a) shows a code segment with two nested 

loops from the Mcf SPEC2000 benchmark.  The control 
flow graph for the code is shown in Figure 1 (b) 
(assuming the loop has been converted to a bottom test 
loop).  Since the block containing Load1 is in both loops, 
the optimization phase may duplicate it into the two loop 
regions, as shown in Figure 2 (a), which could be the 
control flow graph seen in INIP(T).  AVEP on the other 
hand will see a control flow graph as shown in Figure 2
(b).  The blocks in Figure 2 (a) are annotated with the 
branch probabilities in INIP(T), and blocks in Figure 2
(b) are annotated with the branch probabilities in AVEP. 
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……
While (arcin) 
 tail = load1 
 If (cond)        
  arcin = load2 
  continue 
 arcin = load3 

(a) Source code 

Load1 

Load2 

Load3 
b4 

b2

b3

pre-head b1 

(b) Flow graph 
Figure 1. Structure of a loop in price_out_impl of 

the Mcf benchmark 

In order for AVEP and INIP(T) to have the same 
blocks and regions, we normalize AVEP to the same 
control flow graph as seen by INIP(T).  We refer to the 
normalized AVEP as NAVEP.  The normalization 
duplicates some blocks in AVEP to multiple copies in 
NAVEP.  We assign to each block in NAVEP the same 
branch probability as its original block in AVEP.  Figure 
3 shows the normalized AVEP with three copies for block 
b2.  All blocks in Figure 3 are assigned the same branch 
probabilities as their original blocks in AVEP.   

To compute the standard deviations, we also need to 
know the block frequencies for some of the duplicated 
blocks in NAVEP, which are the weights in the standard 
deviation computation.  We cannot simply use the block 
frequency of the block in AVEP for all the duplicated 
blocks in NAVEP.  Otherwise the weights for the 
duplicated blocks in NAVEP are higher than their real 
values since the sum of the block frequencies of all the 
blocks in NAVEP corresponding to the same block in 
AVEP should equal to the block frequency of the block in 
AVEP.   

b2

b3

b4 

b2’ 

b2’’ 

.20 .80

.70 .30

.65 .35 

b1

.90 .10

(a) CFG of INIP(T) 

b2 

b3 

b4

.023 .977

.88 .12 

b1 

(b) CFG AVEP 
Figure 2. CFG for INIP(T) and AVEP 

b2

b3

b4

b2’ 

b2’’ 

.88 .12

.88 .12 

.88 .12 

b1

.977 .023

Figure 3. CFG for NAVEP 
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Sd.BP(T)=
60004300044000600010001000

6000*)20.88(.43000*)70.88(.44000*)90.977(.1000*)65.88(. 2222
= 045.0 = 0.21 

Sd.CP(T) = 0
1000

1000*)0.10.1( 2

Sd.LP(T) = 
600044000

6000*)80.012.0(44000*)70.0*90.088.0*977.0( 22
 = 076.0 0.27 

Figure 5. Calculations of standard deviations for the sample program 

b2

b3

b4

.023 .977

.88 .12 

b1 1000

50000

6000

44000 

(a) Block Frequencies for AVEP 

b2 

b3 

b4 

b2’ 

b2’’ 

.88 .12 

.88 .12 

.88 .12 

b1 1000 

1000 

1.0 

6000 

6000 

.977 .023 

44000 

44000*0.977 = 43000 

(b) Block Frequencies for NAVEP 
Figure 4. Compute block frequencies for 

duplicate blocks 

We determine the block frequencies for the duplicated 
blocks by propagating the block frequencies from the 
non-duplicated blocks to all the duplicated blocks based 
on the branch probability assignment.  For example, in 
Figure 4 (a), block b1, b3, and b4 are not duplicated.  

Starting from the block frequencies of these blocks in 
AVEP (assuming the frequencies are 1000, 6000, 44000 
respectively), we can obtain the block frequencies for the 
three copies of the block b2 in NAVEP, as shown in 
Figure 4 (b), where the frequencies for non-duplicated 
blocks are shown in bold face while the propagated 
frequencies for the duplicated blocks are in italic.  The 
sum of the frequencies for the three copies of the block b2 
equals to 50000, the same as the frequency of the block 
b2 in AVEP.  Notice that although in this example the 
region entry blocks are not duplicated, in general, it is 
possible that a region entry block is a duplicated block. 

We use a general method known as the Markov 
Modeling of Control Flow [18] to determine the block 
frequencies for the duplicated blocks.  In this method, we 
first formulate a system of linear equations, in which the 
frequencies of the non-duplicated blocks are the constant 
coefficients, and the frequencies of the duplicated blocks 
are the unknowns.  From the system of the linear 
equations, we can find the solutions for the unknowns, 
which are the block frequencies of the duplicated blocks. 
Now that NAVEP has the same set of blocks as INIP(T) 
and all the blocks in NAVEP are assigned both branch 
probabilities and block frequencies, we can compute the 
standard deviations.  With respect to the INIP(T) in 
Figure 2 (a) and the NAVEP in Figure 4 (b),  we can 
compute Sd.BP(T), the standard deviation of branch 
probabilities for the 4 blocks, Sd.CP(T), the standard 
deviation of completion probabilities for the non-loop 
region containing blocks b1 and b2, and Sd.LP(T), the 
standard deviation of loop-back probabilities for the two 
loop regions, as shown in Figure 5.

In the above example, we have a simple non-loop 
region whose completion probability is trivially 
computed.  Each of the two loop regions has only one 
execution path from the loop entry back to itself, thus the 
loop-back probability is easily computed as the 
probability of the execution path.   In general, however, 
non-loop or loop regions may be more complicated.  We 
briefly describe the procedure for computing completion 
probability and loop-back probability in the next two 
subsections. 
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3.2. Compute Completion Probability 
Given a non-loop region such that each block is 

assigned a branch probability, the completion probability 
of the region is the likelihood that the execution starting at 
the region entry reaches the last block of the region.  As 
an example, we take a look at the region shown in Figure 
6.  When the execution starts at block b5, the completion 
probability of the region is the probability of the 
execution arriving at block b8.  For a region without side 
exits, the completion probability is always 1.  The side 
exit branches reduce the completion probability of a 
region.   

A general approach for computing completion 
probability is to assume the entry block of the region has 
an execution frequency of 1, and propagate that frequency 
all the way to the last block of the region.  Then the 
frequency of the last block is the completion probability 
of the region.  For the example in Figure 6, with the 
assumption that block b5 has a frequency of 1, block b6 
will have a frequency of 0.4, and block b7 has a 
frequency of 0.6, and the frequency of block b8 will be 
0.4 * 0.8 + 0.6 * 0.9 = 0.86.  Therefore, the completion 
probability of the region is 0.86. 

b5

b8

b6 b7

.4 .6 

.2 .8 .9 .1 

CP=0.86 

Figure 6. Completion probability for a non-loop 
region

3.3. Compute Loop-back Probability  
Given a loop region such that each block is assigned 

branch probabilities, the loop-back probability of the 
region is the likelihood that the execution starting at the 
loop entry reaches back to the same loop entry block.  If 
we create a dummy block such that the loop back edges 
are redirected to the dummy block instead of the entry 
block, then we can compute the loop-back probability by 
assuming the entry block of the loop has an execution 
frequency of 1, propagating the frequency all the way to 
the dummy block.  The frequency of the dummy block 
will be the loop-back probability.  An example is shown 
in Figure 7.  The original loop is shown in (a), and the 
CFG with back edges directed to the dummy node is 
shown in (b).  With the assumption that block b5 has a 

frequency of 1, block b7 will have a frequency of 0.6, 
block b8 will have a frequency of 0.38, and the dummy 
node will have frequency of 0.38*0.9 + 0.6*0.9 = 0.886.  
Therefore, the loop-back probability of the loop region is 
0.886.  

b5

b8

b6 b7

.4 .6 

.2 .8 .1 .9

.1 .9
LP=0.886 

dummy 

b5

b8 

b6 b7 

.4 .6 

.2 .8 .1 .9 

.1 .9 

(a)   (b) 
Figure 7. Loop-back probability for a loop region 

Notice that, in the above computation of standard 
deviations, some approximation may occur when we 
normalize the average profile to an initial profile, for 
determining the frequencies of the duplicated region/loop 
head blocks.  Our experience indicates that most head 
blocks are not duplicated and therefore the approximation 
does not occur often.  Furthermore, the comparison 
between the training profile and the average profile does 
not involve any approximation.  As the result, the 
approximation would bias against the comparison 
between the initial profile and the training profile.  Since 
this paper argues in favor of the initial profile, the bias 
against the initial profile should not be an issue. 

4. Experimental results 
We report our experimental results using IA32EL for 

the SPEC2000 INT and FP benchmarks, running on a 
900MHz Itanium2 machine with Microsoft Windows 
operating system. INIP(T) is run with retranslation 
thresholds T = 100, 200, 500, 1k, 2K, 5K, 10K, 20K, 40K, 
80K, 160K, 1M and 4M.  Both INIP(T) and AVEP are 
run with the reference input (or the last reference input for 
benchmarks with multiple reference inputs).  INIP(train) 
is obtained running with the training input.   

After the information for INIP(T), INIP(train) and 
AVEP are collected into files, we use an off-line tool to 
analyze the data and calculate the standard deviations.  
The analysis tool uses the solver for system of linear 
equations in the Intel’s Math Kernel Library [13] to 
propagate block frequencies for the duplicated blocks in 
NAVEP and compute CP and LP for regions in INIP(T) 
and AVEP. 
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Figure 8.  Standard deviations of branch 
probabilities

4.1. Accuracy of Branch Probabilities 
Figure 8 shows the standard deviations of branch 

probabilities with the training input (Sd.BP(train)) and 
with the reference input for different retranslation 
thresholds (Sd.BP(T)).  The upper line is for the average 
over the 12 INT benchmarks.  Although the initial 
prediction of branch probabilities with retranslation 
thresholds of 100 to 1k are less accurate than the training 
input, the initial prediction with retranslation thresholds 
2k or higher is similar or more accurate than the 
prediction by the training input.  The increase of 
Sd.BT(T) when T goes from 5k to 10k is due to a phase 
change in Mcf program (we will discuss a little more 
about Mcf when we show the results for individual 
benchmarks).   

The lower line is for the averages over the 14 FP 
benchmarks.  The initial prediction is better than the 
prediction by the training input when the retranslation 
threshold is 500 or higher. This supports the conclusion 
that programs running under IA32EL with a relatively 
small retranslation threshold should be able perform 
reasonably well comparing to the static binaries compiled 
by the static compiler with profile-guided optimization 
using the training input [1].   

Individual benchmarks, however, show significantly 
higher or lower accuracy with the initial prediction than 
the prediction by the training input.  Figure 9 shows 
Sd.BP(T) for INT benchmarks.  For Perlbmk, Twolf, 
Bzip2, and Eon, the initial prediction with retranslation 
threshold of 100 or higher is more accurate than the 
training input. In particular, the initial prediction for 
Perlbmk is significantly better than the training input.  For 
several other benchmarks, the initial prediction is less 
accurate than the training input.   Noticeably, Mcf and 
Gzip have much worse prediction accuracy than the 
training input, even with the retranslation threshold as 
high as 4M.  Also, the Mcf benchmark seems to have 
phase changes between thresholds 5K and 10K and also 
between 160K and 4M, and therefore the initial prediction 
could not predict its branch probability accurately.   
Furthermore, half of the benchmarks have Sd.BP(T) 
higher than 0.1, even with a retranslation threshold up to 
160K.  For these benchmarks, phase awareness with more 
profiling phases may improve the accuracy.  

Compiler optimizations often use a branch probability 
threshold for identifying likely taken branches to form 
regions, e.g. the “minimum branch probability” of 70% in 
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Figure 9.  Standard deviations of branch probabilities for SPEC2000 INT 
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[5].  A small difference between branch probabilities of 
INIP(T) and AVEP could be significant if the branch 
probabilities are on different sides of the threshold.  For 
example, the difference between 68% in INIP(T) and 78% 
in AVEP may cause the optimizer to classify the branch 
as not likely to be taken (since 68% of taken probability 
in INIP(T) is less than the threshold), even though the 
branch is frequently taken in AVEP.  On the other hand, 
the difference between 72% in INIP(T) and 99% in AVEP 
would not affect the optimization decision at all.  To see 
how the branch probabilities may affect optimizations, we 
use the following three ranges, [0-.3), [.3-.7], and (.7-1.0], 
of the branch probabilities to compare the predictions.  
Namely, a branch probability in INIP(T) “matches” the 
corresponding probability in AVEP if and only if their 
values are in the same range.  For example, we may 
consider 0.99 and 0.76 a match, while considering 0.68 
and 0.78 a mismatch.   
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Figure 10.  Branch probability mismatch rates  

Figure 10 shows the “mismatch” rate (weighted 

average with block frequencies in AVEP) of the branch 
probabilities in INIP(T) and those in AVEP.  For INT 
benchmarks, the branch probabilities predicted with the 
training input matches those in AVEP reasonably well 
(mismatches only about 9%).  We need a threshold of 2k 
or above to achieve the similar or better matching score. 
For FP benchmarks, a retranslation threshold of 500 is 
sufficient to bring out prediction accuracy similar to that 
by the training input.  Overall, FP benchmarks are much 
easier to predict accurately than the INT benchmarks. 

Figure 11 shows the mismatches for individual INT 
benchmarks.   The training input predicts for Perlbmk 
very badly, with a mismatch rate of about 50%.  For Mcf, 
INIP(T) matches AVEP very poorly, with a mismatch rate 
of above 30% for most of the thresholds.  For Crafty, 
INIP(T) mismatches AVEP for about 18% of the 
branches.  Gzip is an interesting benchmark.  The 
mismatch rates are high (above 40%) with retranslation 
threshold at 500 or below, and then drop sharply to about 
22% for retranslation thresholds of 1k and above.  For the 
rest of the benchmarks, INIP(T) matches AVEP 
reasonably well.  Notice that most of the lines are 
relatively flat, except those for Gzip, Gap, and Parser.   
This indicates that increasing the retranslation threshold 
dramatically to a large value would only significantly 
increase the profile accuracy for a few benchmarks.

Figure 12 shows the mismatches for individual FP 
benchmarks.   The training input predicts Lucas and Apsi 
poorly, with a mismatch rate of 25% and 20% 
respectively.  INIP(T) predicts Wupwise poorly, with a 
mismatch rate of 20% until the retranslation threshold 
reaches 1M.   For rest of the benchmarks, INIP(T) 
matches AVEP reasonably well (with mismatch rates less 
than 10%). 
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Figure 11.  Branch probability mismatch rates (INT benchmarks) 
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4.2. Accuracy of Completion Probabilities  
Figure 13 shows the standard deviation of completion 

probabilities (Sd.CP(T)).  For INT benchmarks, the 
average Sd.CP(T) is higher than the average Sd.BP(T) for 
INT shown in Figure 8.  This underlines the fact that 
completion probabilities are much harder to predict 
accurately than branch probabilities for control intensive 
INT programs.  Even when the branch probabilities of 
most of the blocks in a region are predicted correctly, a 
single mis-predicted branch in the region may change the 
region’s completion probability dramatically.  A solution 
would be to continuously monitor the side exits of each 
region and re-optimize the region when its completion 
probability changes significantly. Although the average 
Sd.CP(T) for FP is lower than the average Sd.BP(T) for 
FP shown in Figure 8, most of the FP benchmarks are 
loop intensive and only a few easily predictable non-loop 
regions are formed. 

4.3. Accuracy of Loop-back Probabilities  
Figure 14 shows the standard deviation of loop-back 

probabilities (Sd.LP(T)).  As expected, the average 
Sd.LP(T) for FP is noticeably higher than the average 
Sd.BP(T) for FP shown in Figure 8. Figure 14 also 
shows that the Sd.LP(T) for FP steadily decreases as 
retranslation thresholds increases.  This suggests that 
longer profiling period may help loop optimizations. 
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Figure 13. Standard deviation of completion 
probabilities

Compiler optimizations usually rely on trip count 
information to determine their applicability.  We may 
classify loops (single or multiple levels) into the 
following three groups based on their trip count ranges, 
and consider a prediction a match if and only if the 
predicted loop trip count in INIP(T) is in the same range 
as that in AVEP. 

Low trip count loops: the loops with trip count less 
than 10.  These loops may be candidates for loop peeling 
optimizations but neither software pipelining nor data 
prefetching may be applied profitably.  Since LP = (T-
1)/T (see [20]), where T is the loop trip count, loops with 
LP in the range of [0..0.9) are low trip count loops.     
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Figure 15.  Loop-back probability mismatch rate 

Median trip count loops: the loops with trip count 
between 10 and 50.  These loops are possible candidates 
for software pipelining but not for data prefetching.  
Loops with LP in the range of [0.9..0.98] are median trip 
count loops. 

High trip count loops: the loops with trip count more 
than 50.  These loops are good candidates for both 
software pipelining and data prefetching.  Loops with LP 
in the range of (0.98..1.0) are high trip count loops.

Figure 15 shows the average “mismatch” rate 
(weighted by the loop entry block frequencies in AVEP) 
between loop-back probability in INIP(T) and that in 
AVEP.  For INT benchmarks, the initial prediction does 
not predict the ranges of the loop trip count accurately 
until the retranslation threshold reaches a very high value 
(e.g. 160k). Thus we will need additional mechanisms to 
obtain accurate trip count information for advanced loop 
optimizations.  One way is to continuously collect trip 
count information in the optimized code and adjust loop 
optimization when trip count characteristic changes. The 
profiling code for collecting trip count information should 
not impact the performance of the optimized code as 

lightweight instrumentation is possible.  For FP 
benchmarks, the initial prediction predicts the ranges of 
the loop trip count accurately even with a low 
retranslation threshold of 100. 

Figure 16 shows the “mismatch” rate with loop-back 
probabilities in INIP(T) and that in AVEP for individual 
SPEC2000 INT benchmarks.  The loop classification for 
Mcf is completely incorrect until the retranslation 
threshold reaches 10k and above.  Our experiment with 
data prefetching confirms this observation: the high trip 
count loops identified in Mcf by the initial profile with 
small retranslation thresholds turns out to be low trip 
count loops late in the program’s execution and the loops 
having actual high trip counts usually have low trip 
counts during the initial execution.  The classification for 
Vpr and Cc1 is incorrect more than 50% of the time until 
the retranslation threshold reaches 80k and above. 
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4.4. Performance Impact of Initial Profiles 
Although our study correlates retranslation thresholds 

with prediction accuracy, the prediction accuracy alone 
may not be sufficient to determine the performance of the 
programs using the profile.  Other factors, such as the ILP 
available in the code, the cost of optimization, and the 
length of execution of the optimized code, etc, may also 
impact the ultimate performance.   

Figure 17 shows the relative performance of 
SPEC2000 running with the last ref input for different 
retranslation thresholds (higher is better).  The base 
performance is obtained the run with the retranslation 
threshold of 1 (i.e. to optimize all blocks that are executed 
at least once).  For the SPEC2000 INT benchmarks (see 
the line marked with int), the best performance is obtained 
when the retranslation threshold is around 1k to 5k, which 
out-performs the base by nearly 18%.   The Perlbmk 
benchmark has the most dramatic performance 
improvement with accurate initial profile.  The line 
marked with “int no perl” is the relative performance of 
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the SPEC2000 INT without the Perlbmk benchmark.  In 
this case, the best performance is obtained around the 
thresholds of 1k to 5k, which out-performs the base by 
about 7% 

For the FP benchmarks, the best performance is 
obtained when the retranslation threshold is at 50, 200, or 
2k, which out-performs the base by about 2%.   

Although the initial prediction with a high 
retranslation threshold (e.g. 1M and above) is very 
accurate, the corresponding performance is significantly 
worse than a less accurate initial profile (e.g. with a 
retranslation threshold of 2k).  This indicates that in a 
two-phase dynamic binary translator like IA32EL, it is 
important to optimize a program early, even with less 
accurate initial profile, to benefit from the optimized 
execution.
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training run and for initial profiles 

4.5. Overhead of Initial Profiling 
Figure 18 shows the total number of profiling 

operations (sum of all “use” and “taken” count values) for 
the training run and for the initial profiles (normalized 
such that training run has a value of 1).  The initial 
prediction with the thresholds of 500 to 2000 takes less 
than 1% of the profiling operations required for the 
training run.  The training input takes the similar number 
of profiling operations as the initial profile with a 

retranslation threshold of more than 1M.  Clearly, the 
dynamic binary translator can obtain similar or more 
accurate profile with a much shorter profiling period than 
the static compiler with the training input, due to the 
benefit of using the early period of same input to predict 
the future behavior. 

5. Summary and Future Work 
Our study indicates that the initial prediction with 500 

to 2k retranslation thresholds has the accuracy 
comparable to the traditional profile-guided optimizations 
using the training input.  Specifically, for INT 
benchmarks, the initial profile obtained with a 
retranslation threshold of 2000 has the similar prediction 
accuracy to that by the training input, while for FP 
benchmarks, the initial profile with a retranslation 
threshold of 500 is sufficient to achieve the similar 
prediction accuracy by the training input.   

Several benchmarks also show phase behavior and the 
single profiling phase does not capture the average 
program behavior accurately.  For those benchmarks, 
longer profiling periods or selective continuous profiling 
(especially for CP and LP) is beneficial to predict the 
average program behavior more accurately. Effectively 
monitoring region side exits to trigger retranslation and 
phase adaptation looks promising. Inexpensive 
instrumentation for continuous collection of loop trip 
count for advanced loop optimizations is possible [21].  
Furthermore, retranslation thresholds should be chosen 
selectively, as different benchmarks (e.g. INT vs. FP) 
react to retranslation thresholds differently.  

In the future, we may continue work in the following 
areas:

Characterize the mis-predicted branches and regions.  
It is an interesting subject to develop heuristics so 
that the branches and regions that cannot be predicted 
accurately by the initial profile may be selected for 
continuous profiling.   
Develop heuristics to select retranslation thresholds 
for different benchmarks or even for different 
portions of a benchmark.  Although our study 
correlates retranslation thresholds with prediction 
accuracy, the prediction accuracy alone may not be 
sufficient to determine the optimal retranslation 
threshold.  Other factors, such as the ILP available in 
the code, the cost of optimization, and the length of 
execution of the optimized code, etc, may also affect 
the optimal retranslation threshold.    
Construct regions in INIP(train) and compute Sd.CP 
and Sd.LP between INIP(train) and AVEP to 
compare the initial prediction of CP and LP with the 
prediction by the training input. 
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Extend the study to compare the initial profile with 
the specialized (duplicated) program profile in 
addition to the average program profile.  One 
challenge is to produce comparable specialized 
program profiles with different inputs (ref and train) 
and different retranslation thresholds. 
Apply the methodology of this study to real world 
applications.  It will be more challenging to study 
real world applications, as they may have no training 
inputs for comparison. 
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