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Abstract 
We study several major characteristics of dynamic op-

timization within the PARROT power-aware, trace-cache-
based microarchitectural framework. We investigate the 
benefit of providing optimizations which although tightly 
coupled with the microarchitecture in substance are de-
coupled in time. 

The tight coupling in substance provides the potential 
for tailoring optimizations for microarchitecture in a 
manner impossible or impractical not only for traditional 
static compilers but even for a JIT.  We show that the con-
tribution of common, generic optimizations to processor 
performance and energy efficiency may be more than 
doubled by creating a more intimate correlation between 
hardware specifics and the optimizer. In particular, dy-
namic optimizations can profit greatly from hardware 
supporting fused and SIMDified operations.   

At the same time, the decoupling in time allows optimi-
zations to be arbitrarily aggressive without significant 
performance loss. We demonstrate that requiring up to 
512 repetitions before a trace is optimized sacrifices al-
most no performance or efficiency as compared with 
lower thresholds. These results confirm the feasibility of 
energy efficient hardware implementation of an aggres-
sive optimizer. 

1. Introduction 
In this paper we study hardware-based dynamic optimi-

zations within power-aware microarchitectures for high-
performance, general-purpose processors. The essential 
challenge within this domain is the increasingly poor scal-
ing of performance with power consumption. The 
PARROT (the Power-Aware aRchitecture Running Opti-
mized Traces) microarchitecture proposes a trace-cache-
based, decoupled mechanism for handling the frequently 
executed code – as initially reported in [29]. Within this 
microarchitectural framework we focus on the perform-
ance and energy-saving potential of dynamic optimiza-
tions performed on the most frequent traces in program 
execution. 

Identifying frequently executed code sections for opti-
mization has been applied in the software-based schemes 
reported in [15][7][1][10][2]. More recently, similar 
methods were suggested for hardware-based systems  
[17][18][23][22][8][27]. The various proposals differ in 
the methodology and resources used for detecting the hot 
paths, the structure and address space used for storing 
them, and the timing and resources used for optimization.  

The PARROT system employs decoupled dynamic op-
timizations with memoization.  By decoupling our opti-
mizer from execution, we can allow it to run numerous 
cycles without impeding execution progress.  The hard-
ware-based dynamic nature of our optimizations capital-
izes on the advantages of microarchitectural-level optimi-
zations over static optimizations provided by classical 
compilers.  Even targeted JIT compilers may not be able 
to fully exploit the internal microarchitectural context of 
execution. Finally, memoization helps the microarchitec-
ture avoid performing identical optimizations arbitrarily 
often. 

PARROT exploits the dichotomy between frequent (or 
hot) and infrequent (or cold) code in hardware for the 
benefit of both processor performance and power aware-
ness. The PARROT microarchitecture is designed to ef-
fectively identify the most frequent sequences of program 
code, aggressively optimize them once, and then effi-
ciently execute them many times. Trace selection and 
filtering are used to identify the hot code, a dynamic 
optimizer is employed to optimize it, and a trace cache is 
used to store traces for repeated execution. Gradual con-
struction of traces, pipeline decoupling, and specific trace 
optimizations are key factors for power awareness. We 
may in fact be willing to limit the hardware dedicated to 
the cold part of the code for a small price in performance. 
In return, we may be able to budget more aggressive 
hardware to improve performance/power tradeoffs for the 
dominant hot segments of the code. 

We study the contribution of dynamic optimizations to 
processor performance and energy savings within two 
PARROT microarchitectural configurations: a narrow 
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configuration, characterized by an ordinary 4-wide execu-
tion pipeline and modest-size trace cache; and a more 
aggressive wide configuration, characterized by an 8-wide 
execution pipeline and a large trace-cache. Both configu-
rations are tuned to resemble modern OOO processors 
designed for both high-performance and power-
awareness. The studies are conducted with a variety of 
applications compiled for the IA32 Instruction Set Archi-
tecture (ISA). 

 By employing additional filtering on the hot traces that 
are actually optimized, we investigate the proportion of 
the frequent code on which dynamic optimizations have a 
significant impact. We demonstrate that it is sufficient to 
optimize a trace only after several hundreds of repetitions 
in order to retain almost all of the performance and en-
ergy-saving impact. Such infrequent application of the 
optimizations increases the freedom available for the 
hardware design of an optimizer and allows for a relaxed, 
power efficient design.  Moreover, it enables the use of 
long-running and aggressive optimizations. 

Focusing on this set of “blazing” traces, we compare the 
contributions of several major classes of optimizations. 
We measure the overall improvement in processor per-
formance and energy consumption over the corresponding 
PARROT configurations with dynamic optimizations 
disabled. The contribution of dynamic optimizations can 
yield an average IPC improvement of 14-17% as well as 
6-11% savings in energy, on the narrow and wide models, 
respectively.  More than half of the IPC improvement and 
energy savings are due to hardware-specific optimiza-
tions. In particular, equipping the execution hardware 
with more powerful functional units enables specialized 
optimizations such as micro-op fusion and SIMDification. 
Further improvements may be attributed to micro-op re-
scheduling tailored to the available hardware and partial 
renaming for energy savings. 

The rePlay system [22], although targeting performance 
issues,  has much in common with PARROT techniques. 
PARROT and rePlay share the dual front-end, the de-
coupled, post-retirement construction of traces, and dy-
namic optimization of traces stored in a trace-cache. To 
promote power awareness, PARROT proposes a finer 
decoupling of trace construction based on gradual filter-
ing in order to improve controllability of competing de-
sign metrics. PARROT’s trace construction criteria are 
mostly static, enabling better adaptability to program 
structure. A good example is the handling of loops:  by 
cutting loops at iteration boundaries, the PARROT mi-
croarchitecture prevents redundancy in the trace cache 
while still allowing loop unrolling.  In contrast, the dy-
namic selection criteria of rePlay are in better synergy 
with the trace prediction mechanism. Our results com-

plement and strengthen the rePlay study [31] showing the 
significant contribution of dynamic optimizations to 
IA32-based processors. 

PARROT indeed goes beyond rePlay optimization 
scope by introducing core-specific optimizations which 
heavily exploit their integration into the hardware.  

The paper is organized as follows. Section 2 describes 
the PARROT concept and microarchitecture, setting the 
stage for the rest of the paper. Section 3 details the opti-
mization framework. Section 4 describes the simulation 
framework and defines the microarchitectural models 
compared in the current study. Section 5 presents the 
blazing filtering results, while Section 6 details the impact 
of major optimization classes. Finally, Section 7 con-
cludes with a summary and ideas for future studies. 

2. Parrot Microarchitectural Framework 
The PARROT microarchitectural framework provides 

the enabling infrastructure for our research in trace filter-
ing and dynamic optimizations. It is based on the follow-
ing observations: 
• The working set of a program is relatively small. 
• Small segments of code which are repeatedly executed 

(“hot-traces”) usually cover most of the program’s 
working set. 

• Hot traces, unlike other, less frequently executed code 
sections, are regular and predictable, and consequently 
exhibit higher potential for ILP extraction.  

The PARROT concept suggests basing the development 
of high performance power-aware system on an asymmet-
ric decoupling of the processor pipelines, as seen in 
Figure 2.1 (a slightly different decoupling concept is pro-
posed in [3]). The left-hand and right-hand sides of the 
figure are responsible for executing the cold and hot por-
tions of the code, respectively. Although the front-end is 
duplicated, the execution resources are shared between 
the hot and cold subsystems.  

 
Figure 2.1 Schematic PARROT µarch 

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



 

 

 

  

 

 

The cold and hot subsystems have a similar high level 
structure, with each being comprised of foreground and 
background components operating in parallel. The fore-
ground components include the front-end and execution 
pipeline. The background components post-process the 
instruction flow out of the foreground pipeline making 
“off critical path” decisions such as when to move from 
the cold subsystem to the hot subsystem and when to ap-
ply optimizations.  

Previous research [27][13] indicates that a trace cache 
can be very efficient in handling hot code, provided this 
code has been sufficiently well identified. (This is espe-
cially true in Intel’s IA32 ISA which features variable 
length instructions.) Thus, the cold pipeline is fed with 
instructions fetched from an instruction cache, while the 
hot pipeline is fed with traces fetched from a trace cache. 
Both power-awareness and trace-cache effectiveness con-
siderations limit trace construction and trace-cache inser-
tion to frequently executed code sections. Thus, PARROT 
gradually applies dynamic optimizations — the hotter the 
trace is, the more aggressive power-aware optimizations 
are applied. 

Decoupled dynamic optimizations with memoization 
have several advantages.  Decoupling these optimizations 
from the foreground pipeline allows for more aggressive 
optimizations than the on-the-fly optimizations that can 
be performed within a standard execution pipeline.  Dy-
namic information, most notably dynamic branch resolu-
tion, enables optimizations that are impossible for a static 
compiler.  Finally, memoization within the trace-cache of 
decoded and optimized traces greatly enhances both per-
formance and power savings.  

Hardware-based optimizations have the advantage of 
being well integrated with the microarchitecture. Fur-
thermore, microarchitectural level optimizations attain a 
high degree of architectural transparency. The hardware 
is capable of optimizing legacy code, exploiting new mi-
croarchitectural features without the need for recompila-
tion. 

2.1. Traces and Trace-Selection 
An execution trace is a sequence of operations repre-

senting a continuous segment of the dynamic flow (execu-
tion) of a program. Traces may contain execution beyond 
control-transfer instructions (CTIs), and so a trace may 
extend over several basic blocks.  

In the current study we consider decoded atomic traces. 
These traces contain decoded micro-operations (uops) and 
enable reuse of decode activity, thus saving energy [27] 
(decoded traces are of special value for IA32). Traces are 
constructed from the original uops in program order, but 

may later be optimized, resulting in an out-of-order, dif-
ferent, generally shorter sequence of uops. 

Atomic traces are single-entry single-exit blocks [30]. 
Although atomic trace semantics requires a relatively 
complicated recovery mechanism and longer recovery 
time for the case of misprediction, it enables more aggres-
sive optimizations, including uop reordering and elimina-
tion and branch promotion [22][23] and may efficiently 
utilize advanced trace prediction techniques such as those 
proposed in [12].  

Trace selection is the activity of deciding which points 
in the dynamic instruction stream should be designated as 
trace start and end points.  In the current study we apply 
the following selection criteria: 
• Trace capacity is capped at 64 uops. 
• With the exception of extremely large basic blocks, 

traces always terminate on CTIs. 
• All indirect jumps and software exceptions terminate 

basic-blocks, except RETURN instructions. In addi-
tion, taken backward branches terminate a trace. 

• RETURN instructions terminate traces only if they exit 
the outermost procedure context already encountered in 
the current trace. 

• If two or more consecutive traces are identical, they are 
joined into a single trace, until the capacity limit is 
reached. This criterion, together with the taken-
backwards termination condition on traces, achieves 
the effects of explicit loop unrolling, an enabler for 
other optimizations. 

With these criteria, unique trace identifiers (TIDs) can 
be compacted into a single address and a sequence of 
branch directions (taken/not taken). The only indirect CTI 
in this construction is a RETURN, but since its calling 
context is already part of the trace, its target address is 
implicitly available. 

2.2. Microarchitecture 
The background phase of the cold subsystem identifies 

frequent IA32 instruction sequences and captures them as 
traces in the trace cache. It is composed of TID selection, 
TID hot-filtering and finally trace-construction and inser-
tion into the trace-cache. Since all committed instructions 
enter the TID selection phase, continuous training of both 
trace predictor and hot filter is assured. Nevertheless, only 
those TIDs that pass the hot-filter continue to the trace 
construction stage. The background phase of the hot sub-
system identifies the most frequent (blazing) traces, opti-
mizes them and finally inserts them back into the trace 
cache. Post processing is gradually performed, so the 
longer a trace is used the more aggressive optimizations 
are applied to it. 

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004) 
0-7695-2102-9/04 $20.00 © 2004 IEEE 



 

 

 

  

 

 

Two predictors are employed: A branch predictor pre-
dicts the next cache line designated to be fetched from the 
instruction cache for execution on the cold pipeline. Si-
multaneously, a trace predictor predicts the TID of the 
next trace designated to be fetched from the trace cache 
and executed on the hot pipeline. Each predictor is based 
on a global history register (GHR). The GHR is updated 
for each CTI being executed. Both predictors support 
speculative update upon fetch and real update on commit.  

 
Figure 2.2 

Figure 2.3 PARROT main µarch components 
The fetch-selector chooses between the execution pipe-

lines by consulting both the branch predictor and the trace 
predictor. When the trace predictor is successful in mak-
ing a next TID prediction and a trace is successfully 
fetched from the trace-cache it is executed in the hot pipe-
line. Otherwise, cold pipeline execution is commenced 
using the result of the branch predictor.  

For post-processing cold instructions, PARROT em-
ploys a non-speculative TID/trace build scheme. Cold 
committed instructions are collected as long as all 
encountered CTIs satisfy the trace selection criteria (see 
Section 2.1). When a termination condition is reached, a 
new TID, generated from the collected CTIs, is used to 
train the trace predictor. If the TID is subsequently identi-
fied as frequent (see below), the collected micro-ops are 
used to construct an executable trace that can be inserted 
into the trace cache. 

In order to identify the frequently executed instruction 
sequences, PARROT gradually employs two filtering 
mechanism: the hot filter, which is used for selecting fre-
quent TIDs from among those constructed on the cold 
pipeline, and the blazing filter, which is used for selecting 
the most frequent TIDs from among those executed on the 
hot pipeline. Both filters are small caches that retain ac-
cess counters for each TID. Each trace execution incre-
ments the corresponding counter. Once the hot filter 

threshold is reached, the trace is constructed and inserted 
into the trace cache. When the blazing filter threshold is 
reached, the executed trace is optimized and written back 
to the trace cache, replacing the original. 

3. Dynamic Optimizations 
The PARROT optimizer is capable of performing many 

different optimizations effectively. The infrastructure 
maintains a symbol table and a static dependency graph, 
both of which may be implemented as fast hardware ar-
rays. While optimizing, the symbol table and the depend-
ency graphs are updated incrementally with ongoing 
transformations. Optimizations are carried out in several 
passes, with each building upon the results of prior 
passes. Optimizations provide the following benefits: 
• Code reduction: eliminates uops, saving execution 

time and reducing pressure on the reservation station 
and other internal buffers. 

• Dependency elimination: reduces pressure on the reg-
ister file, and improves ILP. 

• Partial renaming: saves renaming effort using virtual-
ization of intra-trace registers and pre-identification of 
live-ins/live-outs. 

• Improved scheduling: improves execution time by 
reordering uops to reduce average wait-time of de-
pendent uops. 

As noted above, optimizations can be classified as either 
generic or core-specific.  

Generic optimizations are independent of the underly-
ing execution core, but rely heavily on the specific seman-
tics of IA32 instructions. These optimizations extend the 
scope of classical compiler optimizations by operating 
across basic block boundaries (atomicity is assured by 
replacing conditional jumps with assert instructions). 
Consequently, they are more effective at breaking de-
pendencies, reducing code size and enabling advanced 
optimizations. Generic optimizations include: 
• Logic simplifications: A ^ A  0; A & A  A; A | 0  A. 
• Arithmetic simplifications: constant folding, condi-
tion propagation and address manipulation. These optimi-
zations enable further memory simplifications and de-
pendency breaking, particularly for unrolled loops. 
• Memory simplification: shadowed store elimination, 
shadowed load eliminations and store forwarding. These 
optimizations reduce memory traffic and shorten depend-
encies, and may also eliminate uops. 
• Data flow simplification: dead code elimination and 
move propagation. These optimizations reduce code size 
and simplify dependencies. 
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Core-specific optimizations are tailored to a specific 
hardware implementation and exploit internal micro-
architectural features to go beyond generic optimizations. 
It is important to note that the generic optimizations must 
precede the core-specific optimizations. Core-specific 
optimizations include: 
• Partial renaming: Partial renaming is targeted at 
power/energy reduction as well as performance and is an 
enabler for all other optimizations. The optimization 
transforms constituent uops to SSA (static single assign-
ment), constructing def-use chains and linking them into 
the symbol table. Since registers are partially renamed to 
consecutive static-virtual registers, only a simple addi-
tional mapping is needed to adjust to free locations in the 
register pool. This in turn reduces runtime overhead.  
• Fusion: Fusion is targeted at reduction of dependen-
cies, register-file pressure and code. The idea is to col-
lapse local dependencies associated with consecutive uops 
along a dependency chain in which all intermediate values 
are either constant or produced internally. Such chains 
may be implemented as one fused operation in hardware, 
eliminating all intermediate register values.  We have 
found the following sequences especially attractive for 
fusion (assert instructions are the result of COMPARE / 
CONDITIONAL-JUMP instruction pairs): 

sub , assert  sub_&_assert 

and, assert  and_&_assert 

shl, add  shl_&_add 

• SIMDification: SIMDification is targeted at reduction 
of code, register-file pressure, memory traffic, and execu-
tion latency. The idea is to merge operations that may be 
scheduled together for execution and require similar exe-
cution resources (such as registers and functional units). 
The merged uops are replaced with a new SIMDified op-
eration. It is important not to combine operations in a 
manner which will increase dependencies or complicate 
the detection of SIMDfiable uops. Therefore, we con-
strain SIMDification to combine only operations which 
have identical or constant inputs and additionally 
SIMDfied uops should share the same tree-height in trace 
dependency graph. Since the SIMDified operation con-
tains only one instance of each non-const input, many 
redundant register-file accesses are eliminated. 

In case the SIMDified operation is a memory operation, 
all merged operations are constrained to be of fixed stride 
relative to each other. This helps reducing memory traffic 
by compressing consecutive memory requests. Since 
SIMDified memory operations may partially miss in the 
cache, this optimization may at times hurt performance, 
and must be applied with care. Our studies indicate that 
the following sequences are attractive for SIMDification: 

Fus_sub_assert, Fus_sub_assert  simd_sub_assert 

load(base,4), load(base+4,4)  load(base, 8) 

• Pre-scheduling Pre-scheduling reorders uops to im-
prove overall execution latency. It uses a heuristic in 
which operations that have longer critical path are posi-
tioned earlier in the trace. The critical path of an operation 
is the longest distance (estimated execution cycles) of any 
path of dependent operations in the dependency graph. 
This heuristic is suitable for applications that make heavy 
use of long latency operations. 

3.1. Hardware implementation 
Although space considerations do not permit us to fully 

elaborate hardware implementation details of all 
optimizations, we sketch some microarchitectural tech-
niques employed for the relatively complex SIMDifica-
tion. Recall that SIMDification is limited to uops that share 
the same tree-height in the trace dependency graph. Since 
the dependency graphs changes as a result of many op-
timizations, it is important to perform SIMDification only 
after the simpler optimizations have completed. For ex-
ample, the generic optimizations may break dependencies 
between the iterations of an unrolled loop, paving the way 
for cross-iteration SIMDification (see Table 3.1 below).  

A small set-associative cache holds pointers to candi-
date uops for SIMDification. The sets are indexed by the 
tree height of uops, and entries are tagged by additional 
SIMD-enablers, including operation type and register 
number. Additional information, such as dependency be-
tween uops is maintained in a standard dependency ma-
trix. 

Each uop in turn is checked against matching candidates 
in the set corresponding to its tree height. A tag match 
indicates that the two uops can be grouped into a legal 
SIMD. If no conflicting memory dependencies are found, 
the SIMDification replaces the original uops in the cache 
for further potential matching.  When there is no match, 
the current uop itself is inserted to the SIMD cache. 

3.2. Examples 
We present a few code examples taken from blazing 

traces of actual applications. Table 3.1 presents a real 
world example trace (taken from MS word) of a loop with 
3 unrolled iterations. The first column of the table pre-
sents the original IA32 instructions of the original trace, 
while the 2nd and 3rd columns present the uops of the de-
coded trace, before and after basic transformations, re-
spectively. Notice that the basic transformations replace 
all conditional branches with control flow assertions: 
original uops 3, 6, 13, 16, 23 and 26 are transformed into 
uops 3, 6, 12, 15, 21 and 24, respectively. Interior direct 
branches 9 and 19 are eliminated. In addition, all registers 
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are transformed to SSA form: internally-used architectural 
register esi in uop 27 is virtualized into v_b(6) in corre-
sponding transformed uop 25. Live-ins/live-outs are ap-
propriately designated: register esi in uop 28 is trans-
formed into lo_esi in uop 26 (prefixes “li_”, “lo_” desig-
nate live/in and live-out registers, respectively). The 4th 
column shows the output of the optimizer, in which 18 
operations are eliminated (64%), 20 register definitions 

are avoided (67%) and critical path length is reduced from 
7 to 2 (71%). In addition, 3 LOAD operations as well as 3 
SUB operations are combined as SIMD: original uops 4, 
13 and 22 are optimized to uop 0, while many CMP-
ASSERT operations are fused: 23 and 24 are fused to uop 
4; some uops are shuffled by pre-scheduling. Note that 
these transformations are enabled with the help of many 
prior code simplifications.  

IA32 Instructions Original PARROT uops Uops after basic-transformations Uops after optimizations 
0. mov  eax  edi 
1. dec   edi 
2. testl eax, eax 
3. je     +0x14 
4. mov  cx  [esi] 
5. cmp  cx, 256 
6. ja      0x2c645e 
7. inc    esi 
8. inc    esi 
9. jmp  -23 
---------------------------- 
10. mov  eax  edi 
11. dec   edi 
12. testl eax, eax 
13. je     +0x14 
14. mov  cx  [esi] 
15. cmp  cx, 256 
16. ja      0x2c645e 
17. inc    esi 
18. inc    esi 
19. jmp  -23 
--------------------------- 
20. mov  eax  edi 
21. dec   edi 
22. testl eax, eax 
23. je     +0x14 
24. mov  cx  [esi] 
25. cmp  cx, 256 
26. ja      0x2c645e 
27. inc    esi 
28. inc    esi 
29. jmp  -23 

0. eax  mov (edi) 
1. edi, eflags  sub (edi, 1) 
2. eflags and (eax, eax) 
3. cond_jmp(e,eflags) 
4. cx  load (ds, esi) 
5. eflags  sub (cx, 256) 
6. cond_jmp (nbe, eflags) 
7. esi, eflags  add (esi, 1) 
8. esi, eflags  add (esi, 1) 
9. jmp(0x3004d8a5) 
---------------------------------------- 
10. eax  mov (edi) 
11. edi, eflags sub (edi, 1) 
12. eflags and (eax, eax) 
13. cond_jmp(e,eflags) 
14. cx  load (ds, esi) 
15. eflags  sub (cx, 256) 
16. cond_jmp (nbe, eflags) 
17. esi, eflags  add (esi, 1) 
18. esi, eflags  add (esi, 1) 
19. jmp(0x3004d8a5) 
---------------------------------------- 
20. eax  mov (edi) 
21. edi, eflags sub (edi, 1) 
22. eflags and (eax, eax) 
23. cond_jmp(e,eflags) 
24. cx  load (ds, esi) 
25. eflags  sub (cx, 256) 
26. cond_jmp (nbe, eflags) 
27. esi, eflags  add (esi, 1) 
28. esi, eflags  add (esi, 1) 
29. jmp(0x3004d8a5) 

0. v_a(0)  move (li_edi) 
1. v_b(0), v_flags(0)  sub (li_edi, 1) 
2. v_flags(1)  and (v_a(0), v_a(0)) 
3. assert_cond (v_flags.z(1), e, ntaken) 
4. v_c(0)  load(li_ds,li_esi) 
5. v_flags(2)  sub (v_c(0), 256) 
6. assert_cond(v_flags.cz(2),nbe, ntaken) 
7. v_b(1), v_flags(3)  add (li_esi, 1) 
8. v_b(2), v_flags(4)  add (v_b(1), 1) 
 
------------------------------------------------------------ 
9. v_a(1)  move (v_b(0)) 
10. v_b(3), v_flags(5)  sub (v_b(0), 1) 
11. v_flags(6)  and (v_a(1), v_a(1)) 
12. assert_cond (v_flags.z(6),e, ntaken) 
13. v_c(1)  load(li_ds,v_b(2)) 
14. v_flags(7)  sub (v_c(1), 256) 
15. assert_cond(v_flags.cz(7),nbe, ntaken) 
16. v_b(4), v_flags(8) add (v_b(2), 1) 
17. v_b(5), v_flags(9)  add (v_b(4), 1) 
 
------------------------------------------------------------ 
18. lo_eax  move (v_b(3)) 
19. lo_edi,v_flags(10) sub(v_b(3), 1) 
20. v_flags(11) and(lo_eax,lo_eax) 
21. assert_cond(v_flags.z(11), e, ntaken) 
22. lo_cx load(li_ds,v_b(5)) 
23. lo_eflags sub(lo_cx, 256) 
24. assert_cond(lo_eflags(65),nbe, ntaken) 
25. v_b(6),v_flags(12) add (v_b(5), 1) 
26. lo_esi,v_flags(13) add(v_b(6), 1) 
27. jmp (0x3004d8a5) 

0.  v_c(0),v_c(1), lo_cx 
    3Xload(li_ds,li_esi) 
1. v_b(0),v_a(1),v_b(3),lo_eax, lo_edi 
    3Xsub(li_edi,1, li_edi,2, li_edi, 3) 
2. jmp (0x3004d8a5) 
3. lo_esi add(li_esi, 0x6) 
4. lo_eflags 
    sub&assert(lo_cx,256,nbe,ntaken) 
5. and&assert(v_b(3),v_b(3), e, ntaken) 
6. sub&assert(v_c(1), 256, nbe, ntaken) 
7. and&assert(v_b(0), v_b(0),e, ntaken) 
8. sub&assert(v_c(0), 256, nbe, ntaken) 
9. and&assert(li_edi, li_edi, e, ntaken) 

Table 3.1 Optimized trace example from SysMark 2000 Microsoft word 
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Figure 3.1 Trace dependency graph after basic transforms 

The corresponding reduction in dependencies and criti-
cal path length can be observed by comparing Figure 3.1, 
the dependency graph after basic transformations, with 
Figure 3.2, the dependency graph after optimizations. 

9
and&
assert

3
add

2
jmp

1
3Xsub

7
and&
assert

0
3Xload

8
sub&
assert

6
sub&
assert

4
sub&
assert

5
and&
assert  

Figure 3.2 Trace dependency graph after optimizations 
Next example, presented in Table 3.2, is a trace from 

gcc containing a loop with 2 unrolled iterations.  As 
above, columns 1, 2 and 3 of the figure present the origi-
nal trace, decoded trace and transformed trace, respec-
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tively.  The 4th column shows the output of the optimizer, 
in which 9 operations are eliminated (56%), 4 register 
definitions are avoided (40%) and critical path length is 
reduced from 7 to 5 (40%). In addition, a store operation 

is avoided, the original uops 1 and 2 are eliminated, and 
the load operation of uop 8 is replaced by a simple move. 

 

IA32 Instructions Original PARROT uops Uops after basic-transformations Uops after optimizations 
0. mov edx  [esp+4] 
1. mov [esp+4]  esi 
2. mov  esi  edi 
3. mov ecx  edi 
4. mov  edi  edx 
5. test  edx  edx 
6. jnz  .-16 
 
-------------------------------- 
7. mov edx  [esp+4] 
8. mov [esp+4]  esi 
9. mov  esi  edi 
10. mov ecx  edi 
11. mov  edi  edx 
12. test  edx  edx 
13. jnz  .-16 

0. edx  load (ss, esp, 4) 
1. store_data (esi) 
2. store_address (ss, esp, 4) 
3. esi  move (edi) 
4. ecx  move (edi) 
5. edi  move (edx) 
6. eflags  and (edx, edx) 
7. cond_jmp(nz, eflags) 
-------------------------------------- 
8. edx  load (ss, esp, 4) 
9. store_data (esi) 
10.store_address (ss, esp, 4) 
11. esi  move (edi) 
12. ecx  move (edi) 
13. edi  move (edx) 
14. eflags  and (edx, edx) 
15. cond_jmp(nz, eflags) 

0. v_a(0)  load (li_ss, li_esp, 4) 
1. store_data (li_esi) 
2. store_address (li_ss, li_esp, 4) 
3. v_b(0)  move (li_edi) 
4. v_a(1)  move (li_edi) 
5. v_b(1)  move (v_a(0)) 
6. v_flags(0)  and (v_a(0), v_a(0)) 
7. assert_cond (v_flags(0), nz, taken) 
---------------------------------------------------- 
8. lo_edx  load (li_ss, li_esp, 4) 
9. store_data (v_b(0)) 
10. store_address (li_ss, li_esp, 4) 
11. lo_esi   move (v_b(1)) 
12. lo_ecx  move (v_b(1)) 
13. lo_edi   move (lo_edx) 
14. lo_eflags and (lo_edx, lo_edx) 
15.  cond_jmp (nz, lo_eflags) 

0. v_a(0), lo_esi, lo_ecx  
     load (li_ss, li_esp, 4) 
1. lo_edx, lo_edi  move (li_esi) 
2. lo_eflags  and (lo_edx, lo_edx) 
3. cond_jmp(NZ, lo_eflags) 
4. store_address (li_ss, li_esp, 4) 
5. store_data (li_edi, 2) 
6. fus_and_assert(v_a(0),v_a(0),nz,taken) 

Table 3.2 Optimized trace example from SpecInt 2000 gcc 

3.3. Unrolling Degree 
To obtain some measure of the effects of different un-

rolling degrees on trace execution efficiency we plotted 
various efficiency metrics against the number of loop 
iterations unrolled in the gcc example above. 

Figure 3.3 demonstrates the non-linear optimization 
impact across different unrolling degrees. In this exam-
ple, optimization effectiveness rises across higher unroll-
ing degrees. However, maximum effectiveness is at-
tained with 6-fold unrolling, achieving almost 80% re-
duction. Note that about half of the impact is obtained 
with only two loop iterations.  
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Figure 3.3 Impact of loop unrolling on uop and dependency 
reduction in gcc trace example 

4. Simulation Framework 
We employ an in-house proprietary simulation envi-

ronment as a modeling and research vehicle for the 
PARROT microarchitecture. The simulators are de-
signed with maximum flexibility and configurability in 
order to enable comparative study of the diverse set of 
microarchitectural alternatives detailed in Section 4.3, on 
the diverse set of benchmark applications listed in 4.2. 

The simulators are trace-driven; they simulate execu-
tion traces of applications compiled for the IA32 archi-
tecture. They implement all the components of the 
PARROT microarchitecture, including the less tradi-
tional optimizer, and all of the optimizations and pre-
computations described above. 

4.1. Energy Simulation 
For energy simulation we employed a WATTCH-like 

approach, using accurate and up-to-date data extracted 
from real processors for the internal components, ensur-
ing the relevancy of our results.  

The power-modeling infrastructure is based on Intel 
propriety tools. These include formulas for small func-
tional blocks, each of which was closely correlated to the 
corresponding hardware implemented on recent technol-
ogy. The formulas are composed of arithmetic expres-
sions involving parameters which stand for dynamic 
events (i.e. counters). A formula is designed to predict 
the dynamic energy consumption of the block, and its 
sub-formulas cover both active and idle power. 
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The methodology we developed allows us to use the 
correlated formulas as building blocks, and compose 
them into larger formulas describing the energy con-
sumption of higher-level units in our micro-architecture. 
In this composition process we utilize three mechanisms: 
instantiation, mapping and scaling. For each unit in the 
microarchitectural model we instantiate a set of formu-
las that best fit the functionality and energy behavior of 
that unit. For each formula we provide a mapping of its 
original parameters into actual event-counters of the 
simulated model. In addition, each formula is potentially 
the subject of scaling representing uniform size or activ-
ity enlargements over the original block. There are sepa-
rate scaling factors for active and for idle power, repre-
senting extensions such as increased number of ports, 
increased number of cache entries, etc. 

Consequently, power modeling for conventional units 
is relatively straightforward, whereas the power model-
ing for new units which have no similar original formu-
las (e.g., the optimizer or the trace constructor) requires 
more work. For example, the power model of the opti-
mizer employs instances of buffers and tables taken from 
the ROB, rename and scheduling stages of the pipeline, 
scaled down to accommodate a single trace, and with 
some combinations of significant optimizer events 
mapped to the original execution events. 

Leakage is derived from the dynamic power under 
some simplifying assumptions. We assume uniform 
leakage 1) in space over two coarse component types, 
the processor core and the level-2 cache, and 2) in time, 
modeling a consistently high temperature. 

To emulate the high temperature, we choose the appli-
cation with highest average dynamic-power PMAX of the 
base OOO model.  This turns out to be swim of the 
SpecFP suite (see below). For a component area A, we 
define the uniform leakage power as A * PMAX * T, 
where T is a technology constant. We use technology 
constants of 5% for each MByte of level 2 cache and 
40% for the standard core. These fairly large constants 
are used in accordance with the technological trend of 
increasing leakage. Thus, for a model with M Mbytes of 
L2 cache and a core of area K times the standard OOO 
core, the total leakage energy LE of an application run-
ning for CYC cycles is modeled by the formula 

LE = PMAX * (0.05 * M + 0.4 * K) * CYC 
This infrastructure produces energy estimations for the 

different micro-architecture models and their compo-
nents, usable for global trade-off analysis. For more de-
tails on the simulation methodology and comparative 
results (e.g. breakdown of energy/power consumption of 

different microarchitectural components) we refer the 
reader to [29]. 

4.2. Benchmarks 
Our benchmark suite covers a wide range of optimized 

application traces, 30 or 100 million instructions each. 
The 30 application runs can be classified as follows: 
• SpecInt 2000: bzip, crafty, gap, gcc, gzip, parser, 
perlbmk, vortex (30M). 
• SpecFP 2000: art, facerec, fma3d, lucas, mesa, six-
track, swim, wupwise (30M). 
• Office / Windows applications from SysMark 2000: 
office, powerpoint, virusscan, word (100M). 
• Multimedia: flash (from SysMark-2000, 100M), 
Dragon, lightwave, quakeIII, 3DsMax (light, raster and 
geom), Flask-MPEG4 (custom Multimedia traces, 30M). 
• DotNet: image, phong (custom applications, 100M). 

4.3. Models 
To investigate the influence of our thresholded dy-

namic optimizations we configured the following mod-
els.  First, using our most aggressive optimizations, we 
varied the number of trace repetitions which would trig-
ger trace optimization from 8 to 16K, adding one data-
point to represent a threshold of infinity under which 
optimization would never be triggered.  Table 4.1 sum-
marizes our models for narrow and wide cores. The mi-
croarchitectural parameters used for these configurations 
are summarized in Table 4.2. 

    Threshold

Core 
8 64 512 4096 16384 - 

Narrow N8 N64 N512 N4K N16K N- 
Wide W8 W64 W512 W4K W16K W- 

Table 4.1 Configurations using different blazing thresholds 
Using the optimum threshold indicated by running 

these models on our benchmarks, we then investigated 
the contribution of each of our optimizations in isolation 
to determine which are most crucial for improving power 
and performance. For these experiments, we divided our 
optimizations into a number of general classes: 
• G: Generic (logic/flow/memory) simplifications 
• S: Pre-Scheduling 
• F: Uop Fusions 
• X: SIMDifications 
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 Parameter  N* W* 
Core area (relative to base OOO) 1.4 2.4 
Predictor entries (branch + trace) 2K + 2K 4K + 4K 
FHR length (branch + trace) 16 + 32 16 + 32 
Icache 32KB 32KB 
Tcache entries 128 512 
FE pipeline width (cold + hot) 4 + 4 4 + 8 
ROB entries 100 150 
Sched. Window 32 50 
Exec. Ports 4 8 
EXEC pipeline width 4 8 
Hot filter (entries,  threshold) 1K, 24 1K, 8 
Blazing filter (entries,  threshold) 1K, * 1K, * 
Max uops in trace 64 
Optimizations enabled * 
Optimizer latency (non pipelined) 100 cycles 
L1 Dcache (size, latency) 64KB, 3 
L2 Ucache (size, latency) 2MB, 9 
Memory latency 120 
Line size (I and D) 64B 
All caches  (I, D, T) associativity 8-way, LRU 

Table 4.2 µarch settings of narrow / wide models. The “*” 
denotes free parameters varying across configurations 

Table 4.3 shows a variety of optimization configura-
tions, ranging from none to most aggressive. Since the 
generic optimizations are enabling for all others, they 
were included with every optimizing configuration.  

Optimizations Narrow Wide 

none N- W- 
G N_G W_G 
G and F N_GF W_GF 
G and X N_GX W_GX 
G and S N_GS W_GS 
G, F, X and S N512 W512 

Table 4.3 Optimization Configurations 

4.4. Metrics 
We employ a variety of metrics designated to evaluate 

and compare different aspects of the simulated models. 
For the overall processor performance we focus on the 
IPC, total energy and Cubic-MIPS-per-WATT (CMPW) 
measurements. IPC and total energy are useful for under-
standing the design tradeoffs assuming the same fre-
quency and same voltage. The CMPW metric is instru-
mental in quantifying the design tradeoffs and power 
awareness of a processor assuming energy consumption 
could be always traded for performance using voltage or 
frequency scaling [4][32].  

We also present metrics related to optimizations, such 
as optimized code (“blazing”) coverage, uop reduction 
and optimizer efficiency (or utilization) and sensitivity. 

5. Results: Blazing Filter Threshold 
This section presents results on a range of thresholds 

for the blazing filter.  Based on the observed trends, a 
threshold providing a reasonable power/performance 
tradeoff is chosen as a reference point against which the 
gains from various optimization configurations are com-
pared with one another in Section 6 below. 

5.1. Optimizations Impact 
In Figure 5.1--Figure 5.3 we observe the impact of the 

blazing threshold on two major microarchitectural pa-
rameters, IPC and energy consumption, as well as its 
impact on a major parameter characterizing the impact of 
dynamic optimizations, namely uop-reduction. Although 
there is a clear growth trend in IPC gain and energy re-
duction when the threshold gets lower, this growth is not 
linear. In most cases, the observed gain diminishes sig-
nificantly below a threshold of 512.  

Considering the different benchmark classes, we ob-
serve that primarily Office, and to a leaser degree Mul-
timedia and SpecInt applications obtain both perform-
ance and energy savings benefits from optimizations. 
The high uop reduction on SpecFP and .NET applica-
tions is not fully realized in performance since it is 
masked by high memory activity. 

The wide models display consistently higher IPC im-
provement and energy savings than the narrow models. 
This can be attributed to the higher uop reduction and 
better availability of hardware resources, such as larger 
trace cache that can store more optimized traces. 

For our purposes, the number of 512 iterations serves 
as a good constant threshold.  Higher thresholds repre-
sent a slightly reduced benefit in overall energy and per-
formance, but this threshold delivers efficiency while 
maintaining low sensitivity of overall performance and 
energy to optimization latency and energy consumption. 
Future studies may consider more sophisticated adaptive 
filtering techniques. 
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Figure 5.1 IPC improvement relative to base non-optimized 
models (N- and W-, respectively) 
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Energy Improvement
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Figure 5.2 Energy improvement relative to base non-
optimized models 

Uop Reduction
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Figure 5.3 Uop-reduction, out of all committed uops in the 
non-optimized models 

5.2. Optimizer Parameters 
The next figures demonstrate the appropriateness of the 

512 threshold with regard to finer characteristics of our 
dynamic optimization model. 

The blazing coverage (of optimized code) is depicted 
in Figure 5.4. About 80% blazing coverage is achievable 
with our 512 threshold, whereas larger thresholds incur a 
sharp drop in coverage. Conversely, smaller thresholds 
exhibit lower utilization of the optimizer (Figure 5.5). 
The 512 threshold is sufficiently large to guarantee that 
any optimized trace is executed more than 3500 times in 
average on the wide models, and more than 450 times on 
the narrow ones.  

In Figure 5.6 and Figure 5.7 we demonstrate that the 
full benefits of optimization with blazing threshold of 
512 are obtained with an optimizer activated very infre-
quently: less than 50 times (8 times for wide models) 
every Million committed instructions, or at most once in 
11000 cycles (60000 cycles of our wide models). 

This low frequency of optimizer activation indicates 
low sensitivity to the actual time it takes to optimize a 
trace. It also hints at the feasibility of implementing a 
reasonably complex optimizer as part of a power-aware 
processor core. 
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Figure 5.4 Coverage of uops from optimized traces out of 
all executed uops 

Optimized Trace Utilization
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Figure 5.5 Utilization of optimizer, measured in thousands 
of executed optimized traces per optimization 
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Figure 5.6 Average number of cycles between consecutive 
activations of the optimizer 
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Figure 5.7 Frequency of activating the optimizer (per Mil-
lion committed instructions) 
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6. Results: Optimizations Breakdown 
In this section we analyze the contribution of each of 

our major optimization classes using our chosen blazing 
threshold of 512. 

The figures below depict the IPC improvement ob-
tained by several optimization classes implemented in 
the narrow and wide models, respectively. The presented 
combinations include the generic optimizations (G), the 
individual addition to G of each of the core-specific fu-
sion (GF), SIMD (GX) and scheduling (GS), and full 
optimizations (with the 512 threshold). The results are 
shown for each of the benchmark groups.  

The benefit of the core-specific optimizations is a ma-
jor contribution on top of the generic ones. The IPC im-
provement (Figure 6.1) of the full optimizations more 
than doubles that of generic optimizations alone, from 
7.4% to 14.6% on the narrow models and from 6.1% to 
17.5% on the wide ones.  
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Figure 6.1 IPC improvement over the reference, non-
optimized models N- and W-, respectively 

At the same time, the energy advantage (Figure 6.2) of 
the full optimizations more than triples that of the ge-
neric ones, extending it from 1% to 6.5% on the narrow 
models and from 2.8% to 11.4% on the wide ones. 

Energy Saving by Optimizations over Base
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Figure 6.2 Energy improvement (decrease) over the refer-
ence, non-optimized models N- and W-, respectively 

The energy results of some benchmarks are less con-
clusive when run on the narrow models. In order to 
summarize more conclusively the performance and en-
ergy tradeoffs, we produced the CMPW results for all 
benchmark groups. These are presented in Figure 6.3 and 
confirm the significance of dynamic optimizations in 
general and of core-specific optimizations in particular, 
on all models and with all benchmarks.     
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Figure 6.3 Overall improvement in power-awareness 
(CMPW) over N- or W-, respectively 

7. Conclusions and Future Work 
We have investigated the potential of a hardware im-

plementation of a dynamic optimizer in a power-aware 
context.  Our study has shown that optimizations which 
are tightly coupled to the microarchitecture in substance 
but not in time can provide a substantial benefit in both 
performance and energy consumption. 

Our filtering experiments have demonstrated that cau-
tious selection of our optimization candidates costs only 
a small reduction in the power/performance benefit of 
the optimizations.  It also proves that considerable timing 
leeway is available and allows for a simpler-design, 
longer-latency and lower-power hardware optimizer im-
plementation. 

We have also shown that the available benefit corre-
sponds to the original investment in optimization effort:  
more aggressive optimizations yield better results in both 
performance improvement and energy savings. At the 
same time, exposure of the hardware characteristics to 
the optimizer is essential for making significant im-
provements over those achievable by standard generic 
techniques. 

This finding paves the way for further studies into the 
precise form a hardware optimizer should take.  For ex-
ample, we can take advantage of predicted utilization of 
the optimizer in order to customize our optimization 
strategy by individual trace.  Expected utilization may be 
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estimable from characteristics of the trace itself, or may 
come from accumulated experience with the current 
workload, or both.  This information may then be used 
for training more adaptive filters.  

Although the PARROT system provides the capability 
of gradual optimization, the optimization grain currently 
studied is very coarse:  either a trace is optimized or it is 
not.  A natural extension is a system with a finer optimi-
zation grain, allowing us to fine-tune the filtering-guided 
optimization investment in a much more precise manner, 
according to the cost and benefit of the optimizations. 
Such strategies would improve our return on optimiza-
tion effort. 

The actual construction of compiler-style optimization 
circuitry is itself a fairly new field and further design 
research will be needed to indicate the best manner to 
proceed.  These technologies may open a new dimension 
in power-aware computing. 
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