

Specialized Dynamic Optimizations
for

 High-Performance Energy-Efficient Microarchitecture
Yoav Almog, Roni Rosner, Naftali Schwartz and Ari Schmorak

Microprocessor Research
Intel Labs, Haifa, Israel

{ yoav.almog, roni.rosner, naftali.schwartz, ari.schmorak }@intel.com

Abstract
We study several major characteristics of dynamic op-

timization within the PARROT power-aware, trace-cache-
based microarchitectural framework. We investigate the
benefit of providing optimizations which although tightly
coupled with the microarchitecture in substance are de-
coupled in time.

The tight coupling in substance provides the potential
for tailoring optimizations for microarchitecture in a
manner impossible or impractical not only for traditional
static compilers but even for a JIT. We show that the con-
tribution of common, generic optimizations to processor
performance and energy efficiency may be more than
doubled by creating a more intimate correlation between
hardware specifics and the optimizer. In particular, dy-
namic optimizations can profit greatly from hardware
supporting fused and SIMDified operations.

At the same time, the decoupling in time allows optimi-
zations to be arbitrarily aggressive without significant
performance loss. We demonstrate that requiring up to
512 repetitions before a trace is optimized sacrifices al-
most no performance or efficiency as compared with
lower thresholds. These results confirm the feasibility of
energy efficient hardware implementation of an aggres-
sive optimizer.

1. Introduction
In this paper we study hardware-based dynamic optimi-

zations within power-aware microarchitectures for high-
performance, general-purpose processors. The essential
challenge within this domain is the increasingly poor scal-
ing of performance with power consumption. The
PARROT (the Power-Aware aRchitecture Running Opti-
mized Traces) microarchitecture proposes a trace-cache-
based, decoupled mechanism for handling the frequently
executed code – as initially reported in [29]. Within this
microarchitectural framework we focus on the perform-
ance and energy-saving potential of dynamic optimiza-
tions performed on the most frequent traces in program
execution.

Identifying frequently executed code sections for opti-
mization has been applied in the software-based schemes
reported in [15][7][1][10][2]. More recently, similar
methods were suggested for hardware-based systems
[17][18][23][22][8][27]. The various proposals differ in
the methodology and resources used for detecting the hot
paths, the structure and address space used for storing
them, and the timing and resources used for optimization.

The PARROT system employs decoupled dynamic op-
timizations with memoization. By decoupling our opti-
mizer from execution, we can allow it to run numerous
cycles without impeding execution progress. The hard-
ware-based dynamic nature of our optimizations capital-
izes on the advantages of microarchitectural-level optimi-
zations over static optimizations provided by classical
compilers. Even targeted JIT compilers may not be able
to fully exploit the internal microarchitectural context of
execution. Finally, memoization helps the microarchitec-
ture avoid performing identical optimizations arbitrarily
often.

PARROT exploits the dichotomy between frequent (or
hot) and infrequent (or cold) code in hardware for the
benefit of both processor performance and power aware-
ness. The PARROT microarchitecture is designed to ef-
fectively identify the most frequent sequences of program
code, aggressively optimize them once, and then effi-
ciently execute them many times. Trace selection and
filtering are used to identify the hot code, a dynamic
optimizer is employed to optimize it, and a trace cache is
used to store traces for repeated execution. Gradual con-
struction of traces, pipeline decoupling, and specific trace
optimizations are key factors for power awareness. We
may in fact be willing to limit the hardware dedicated to
the cold part of the code for a small price in performance.
In return, we may be able to budget more aggressive
hardware to improve performance/power tradeoffs for the
dominant hot segments of the code.

We study the contribution of dynamic optimizations to
processor performance and energy savings within two
PARROT microarchitectural configurations: a narrow

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

configuration, characterized by an ordinary 4-wide execu-
tion pipeline and modest-size trace cache; and a more
aggressive wide configuration, characterized by an 8-wide
execution pipeline and a large trace-cache. Both configu-
rations are tuned to resemble modern OOO processors
designed for both high-performance and power-
awareness. The studies are conducted with a variety of
applications compiled for the IA32 Instruction Set Archi-
tecture (ISA).

 By employing additional filtering on the hot traces that
are actually optimized, we investigate the proportion of
the frequent code on which dynamic optimizations have a
significant impact. We demonstrate that it is sufficient to
optimize a trace only after several hundreds of repetitions
in order to retain almost all of the performance and en-
ergy-saving impact. Such infrequent application of the
optimizations increases the freedom available for the
hardware design of an optimizer and allows for a relaxed,
power efficient design. Moreover, it enables the use of
long-running and aggressive optimizations.

Focusing on this set of “blazing” traces, we compare the
contributions of several major classes of optimizations.
We measure the overall improvement in processor per-
formance and energy consumption over the corresponding
PARROT configurations with dynamic optimizations
disabled. The contribution of dynamic optimizations can
yield an average IPC improvement of 14-17% as well as
6-11% savings in energy, on the narrow and wide models,
respectively. More than half of the IPC improvement and
energy savings are due to hardware-specific optimiza-
tions. In particular, equipping the execution hardware
with more powerful functional units enables specialized
optimizations such as micro-op fusion and SIMDification.
Further improvements may be attributed to micro-op re-
scheduling tailored to the available hardware and partial
renaming for energy savings.

The rePlay system [22], although targeting performance
issues, has much in common with PARROT techniques.
PARROT and rePlay share the dual front-end, the de-
coupled, post-retirement construction of traces, and dy-
namic optimization of traces stored in a trace-cache. To
promote power awareness, PARROT proposes a finer
decoupling of trace construction based on gradual filter-
ing in order to improve controllability of competing de-
sign metrics. PARROT’s trace construction criteria are
mostly static, enabling better adaptability to program
structure. A good example is the handling of loops: by
cutting loops at iteration boundaries, the PARROT mi-
croarchitecture prevents redundancy in the trace cache
while still allowing loop unrolling. In contrast, the dy-
namic selection criteria of rePlay are in better synergy
with the trace prediction mechanism. Our results com-

plement and strengthen the rePlay study [31] showing the
significant contribution of dynamic optimizations to
IA32-based processors.

PARROT indeed goes beyond rePlay optimization
scope by introducing core-specific optimizations which
heavily exploit their integration into the hardware.

The paper is organized as follows. Section 2 describes
the PARROT concept and microarchitecture, setting the
stage for the rest of the paper. Section 3 details the opti-
mization framework. Section 4 describes the simulation
framework and defines the microarchitectural models
compared in the current study. Section 5 presents the
blazing filtering results, while Section 6 details the impact
of major optimization classes. Finally, Section 7 con-
cludes with a summary and ideas for future studies.

2. Parrot Microarchitectural Framework
The PARROT microarchitectural framework provides

the enabling infrastructure for our research in trace filter-
ing and dynamic optimizations. It is based on the follow-
ing observations:
• The working set of a program is relatively small.
• Small segments of code which are repeatedly executed

(“hot-traces”) usually cover most of the program’s
working set.

• Hot traces, unlike other, less frequently executed code
sections, are regular and predictable, and consequently
exhibit higher potential for ILP extraction.

The PARROT concept suggests basing the development
of high performance power-aware system on an asymmet-
ric decoupling of the processor pipelines, as seen in
Figure 2.1 (a slightly different decoupling concept is pro-
posed in [3]). The left-hand and right-hand sides of the
figure are responsible for executing the cold and hot por-
tions of the code, respectively. Although the front-end is
duplicated, the execution resources are shared between
the hot and cold subsystems.

Figure 2.1 Schematic PARROT µarch

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

The cold and hot subsystems have a similar high level
structure, with each being comprised of foreground and
background components operating in parallel. The fore-
ground components include the front-end and execution
pipeline. The background components post-process the
instruction flow out of the foreground pipeline making
“off critical path” decisions such as when to move from
the cold subsystem to the hot subsystem and when to ap-
ply optimizations.

Previous research [27][13] indicates that a trace cache
can be very efficient in handling hot code, provided this
code has been sufficiently well identified. (This is espe-
cially true in Intel’s IA32 ISA which features variable
length instructions.) Thus, the cold pipeline is fed with
instructions fetched from an instruction cache, while the
hot pipeline is fed with traces fetched from a trace cache.
Both power-awareness and trace-cache effectiveness con-
siderations limit trace construction and trace-cache inser-
tion to frequently executed code sections. Thus, PARROT
gradually applies dynamic optimizations — the hotter the
trace is, the more aggressive power-aware optimizations
are applied.

Decoupled dynamic optimizations with memoization
have several advantages. Decoupling these optimizations
from the foreground pipeline allows for more aggressive
optimizations than the on-the-fly optimizations that can
be performed within a standard execution pipeline. Dy-
namic information, most notably dynamic branch resolu-
tion, enables optimizations that are impossible for a static
compiler. Finally, memoization within the trace-cache of
decoded and optimized traces greatly enhances both per-
formance and power savings.

Hardware-based optimizations have the advantage of
being well integrated with the microarchitecture. Fur-
thermore, microarchitectural level optimizations attain a
high degree of architectural transparency. The hardware
is capable of optimizing legacy code, exploiting new mi-
croarchitectural features without the need for recompila-
tion.

2.1. Traces and Trace-Selection
An execution trace is a sequence of operations repre-

senting a continuous segment of the dynamic flow (execu-
tion) of a program. Traces may contain execution beyond
control-transfer instructions (CTIs), and so a trace may
extend over several basic blocks.

In the current study we consider decoded atomic traces.
These traces contain decoded micro-operations (uops) and
enable reuse of decode activity, thus saving energy [27]
(decoded traces are of special value for IA32). Traces are
constructed from the original uops in program order, but

may later be optimized, resulting in an out-of-order, dif-
ferent, generally shorter sequence of uops.

Atomic traces are single-entry single-exit blocks [30].
Although atomic trace semantics requires a relatively
complicated recovery mechanism and longer recovery
time for the case of misprediction, it enables more aggres-
sive optimizations, including uop reordering and elimina-
tion and branch promotion [22][23] and may efficiently
utilize advanced trace prediction techniques such as those
proposed in [12].

Trace selection is the activity of deciding which points
in the dynamic instruction stream should be designated as
trace start and end points. In the current study we apply
the following selection criteria:
• Trace capacity is capped at 64 uops.
• With the exception of extremely large basic blocks,

traces always terminate on CTIs.
• All indirect jumps and software exceptions terminate

basic-blocks, except RETURN instructions. In addi-
tion, taken backward branches terminate a trace.

• RETURN instructions terminate traces only if they exit
the outermost procedure context already encountered in
the current trace.

• If two or more consecutive traces are identical, they are
joined into a single trace, until the capacity limit is
reached. This criterion, together with the taken-
backwards termination condition on traces, achieves
the effects of explicit loop unrolling, an enabler for
other optimizations.

With these criteria, unique trace identifiers (TIDs) can
be compacted into a single address and a sequence of
branch directions (taken/not taken). The only indirect CTI
in this construction is a RETURN, but since its calling
context is already part of the trace, its target address is
implicitly available.

2.2. Microarchitecture
The background phase of the cold subsystem identifies

frequent IA32 instruction sequences and captures them as
traces in the trace cache. It is composed of TID selection,
TID hot-filtering and finally trace-construction and inser-
tion into the trace-cache. Since all committed instructions
enter the TID selection phase, continuous training of both
trace predictor and hot filter is assured. Nevertheless, only
those TIDs that pass the hot-filter continue to the trace
construction stage. The background phase of the hot sub-
system identifies the most frequent (blazing) traces, opti-
mizes them and finally inserts them back into the trace
cache. Post processing is gradually performed, so the
longer a trace is used the more aggressive optimizations
are applied to it.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Two predictors are employed: A branch predictor pre-
dicts the next cache line designated to be fetched from the
instruction cache for execution on the cold pipeline. Si-
multaneously, a trace predictor predicts the TID of the
next trace designated to be fetched from the trace cache
and executed on the hot pipeline. Each predictor is based
on a global history register (GHR). The GHR is updated
for each CTI being executed. Both predictors support
speculative update upon fetch and real update on commit.

Figure 2.2

Figure 2.3 PARROT main µarch components
The fetch-selector chooses between the execution pipe-

lines by consulting both the branch predictor and the trace
predictor. When the trace predictor is successful in mak-
ing a next TID prediction and a trace is successfully
fetched from the trace-cache it is executed in the hot pipe-
line. Otherwise, cold pipeline execution is commenced
using the result of the branch predictor.

For post-processing cold instructions, PARROT em-
ploys a non-speculative TID/trace build scheme. Cold
committed instructions are collected as long as all
encountered CTIs satisfy the trace selection criteria (see
Section 2.1). When a termination condition is reached, a
new TID, generated from the collected CTIs, is used to
train the trace predictor. If the TID is subsequently identi-
fied as frequent (see below), the collected micro-ops are
used to construct an executable trace that can be inserted
into the trace cache.

In order to identify the frequently executed instruction
sequences, PARROT gradually employs two filtering
mechanism: the hot filter, which is used for selecting fre-
quent TIDs from among those constructed on the cold
pipeline, and the blazing filter, which is used for selecting
the most frequent TIDs from among those executed on the
hot pipeline. Both filters are small caches that retain ac-
cess counters for each TID. Each trace execution incre-
ments the corresponding counter. Once the hot filter

threshold is reached, the trace is constructed and inserted
into the trace cache. When the blazing filter threshold is
reached, the executed trace is optimized and written back
to the trace cache, replacing the original.

3. Dynamic Optimizations
The PARROT optimizer is capable of performing many

different optimizations effectively. The infrastructure
maintains a symbol table and a static dependency graph,
both of which may be implemented as fast hardware ar-
rays. While optimizing, the symbol table and the depend-
ency graphs are updated incrementally with ongoing
transformations. Optimizations are carried out in several
passes, with each building upon the results of prior
passes. Optimizations provide the following benefits:
• Code reduction: eliminates uops, saving execution

time and reducing pressure on the reservation station
and other internal buffers.

• Dependency elimination: reduces pressure on the reg-
ister file, and improves ILP.

• Partial renaming: saves renaming effort using virtual-
ization of intra-trace registers and pre-identification of
live-ins/live-outs.

• Improved scheduling: improves execution time by
reordering uops to reduce average wait-time of de-
pendent uops.

As noted above, optimizations can be classified as either
generic or core-specific.

Generic optimizations are independent of the underly-
ing execution core, but rely heavily on the specific seman-
tics of IA32 instructions. These optimizations extend the
scope of classical compiler optimizations by operating
across basic block boundaries (atomicity is assured by
replacing conditional jumps with assert instructions).
Consequently, they are more effective at breaking de-
pendencies, reducing code size and enabling advanced
optimizations. Generic optimizations include:
• Logic simplifications: A ^ A 0; A & A A; A | 0 A.
• Arithmetic simplifications: constant folding, condi-
tion propagation and address manipulation. These optimi-
zations enable further memory simplifications and de-
pendency breaking, particularly for unrolled loops.
• Memory simplification: shadowed store elimination,
shadowed load eliminations and store forwarding. These
optimizations reduce memory traffic and shorten depend-
encies, and may also eliminate uops.
• Data flow simplification: dead code elimination and
move propagation. These optimizations reduce code size
and simplify dependencies.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Core-specific optimizations are tailored to a specific
hardware implementation and exploit internal micro-
architectural features to go beyond generic optimizations.
It is important to note that the generic optimizations must
precede the core-specific optimizations. Core-specific
optimizations include:
• Partial renaming: Partial renaming is targeted at
power/energy reduction as well as performance and is an
enabler for all other optimizations. The optimization
transforms constituent uops to SSA (static single assign-
ment), constructing def-use chains and linking them into
the symbol table. Since registers are partially renamed to
consecutive static-virtual registers, only a simple addi-
tional mapping is needed to adjust to free locations in the
register pool. This in turn reduces runtime overhead.
• Fusion: Fusion is targeted at reduction of dependen-
cies, register-file pressure and code. The idea is to col-
lapse local dependencies associated with consecutive uops
along a dependency chain in which all intermediate values
are either constant or produced internally. Such chains
may be implemented as one fused operation in hardware,
eliminating all intermediate register values. We have
found the following sequences especially attractive for
fusion (assert instructions are the result of COMPARE /
CONDITIONAL-JUMP instruction pairs):

sub , assert sub_&_assert

and, assert and_&_assert

shl, add shl_&_add

• SIMDification: SIMDification is targeted at reduction
of code, register-file pressure, memory traffic, and execu-
tion latency. The idea is to merge operations that may be
scheduled together for execution and require similar exe-
cution resources (such as registers and functional units).
The merged uops are replaced with a new SIMDified op-
eration. It is important not to combine operations in a
manner which will increase dependencies or complicate
the detection of SIMDfiable uops. Therefore, we con-
strain SIMDification to combine only operations which
have identical or constant inputs and additionally
SIMDfied uops should share the same tree-height in trace
dependency graph. Since the SIMDified operation con-
tains only one instance of each non-const input, many
redundant register-file accesses are eliminated.

In case the SIMDified operation is a memory operation,
all merged operations are constrained to be of fixed stride
relative to each other. This helps reducing memory traffic
by compressing consecutive memory requests. Since
SIMDified memory operations may partially miss in the
cache, this optimization may at times hurt performance,
and must be applied with care. Our studies indicate that
the following sequences are attractive for SIMDification:

Fus_sub_assert, Fus_sub_assert simd_sub_assert

load(base,4), load(base+4,4) load(base, 8)

• Pre-scheduling Pre-scheduling reorders uops to im-
prove overall execution latency. It uses a heuristic in
which operations that have longer critical path are posi-
tioned earlier in the trace. The critical path of an operation
is the longest distance (estimated execution cycles) of any
path of dependent operations in the dependency graph.
This heuristic is suitable for applications that make heavy
use of long latency operations.

3.1. Hardware implementation
Although space considerations do not permit us to fully

elaborate hardware implementation details of all
optimizations, we sketch some microarchitectural tech-
niques employed for the relatively complex SIMDifica-
tion. Recall that SIMDification is limited to uops that share
the same tree-height in the trace dependency graph. Since
the dependency graphs changes as a result of many op-
timizations, it is important to perform SIMDification only
after the simpler optimizations have completed. For ex-
ample, the generic optimizations may break dependencies
between the iterations of an unrolled loop, paving the way
for cross-iteration SIMDification (see Table 3.1 below).

A small set-associative cache holds pointers to candi-
date uops for SIMDification. The sets are indexed by the
tree height of uops, and entries are tagged by additional
SIMD-enablers, including operation type and register
number. Additional information, such as dependency be-
tween uops is maintained in a standard dependency ma-
trix.

Each uop in turn is checked against matching candidates
in the set corresponding to its tree height. A tag match
indicates that the two uops can be grouped into a legal
SIMD. If no conflicting memory dependencies are found,
the SIMDification replaces the original uops in the cache
for further potential matching. When there is no match,
the current uop itself is inserted to the SIMD cache.

3.2. Examples
We present a few code examples taken from blazing

traces of actual applications. Table 3.1 presents a real
world example trace (taken from MS word) of a loop with
3 unrolled iterations. The first column of the table pre-
sents the original IA32 instructions of the original trace,
while the 2nd and 3rd columns present the uops of the de-
coded trace, before and after basic transformations, re-
spectively. Notice that the basic transformations replace
all conditional branches with control flow assertions:
original uops 3, 6, 13, 16, 23 and 26 are transformed into
uops 3, 6, 12, 15, 21 and 24, respectively. Interior direct
branches 9 and 19 are eliminated. In addition, all registers

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

are transformed to SSA form: internally-used architectural
register esi in uop 27 is virtualized into v_b(6) in corre-
sponding transformed uop 25. Live-ins/live-outs are ap-
propriately designated: register esi in uop 28 is trans-
formed into lo_esi in uop 26 (prefixes “li_”, “lo_” desig-
nate live/in and live-out registers, respectively). The 4th
column shows the output of the optimizer, in which 18
operations are eliminated (64%), 20 register definitions

are avoided (67%) and critical path length is reduced from
7 to 2 (71%). In addition, 3 LOAD operations as well as 3
SUB operations are combined as SIMD: original uops 4,
13 and 22 are optimized to uop 0, while many CMP-
ASSERT operations are fused: 23 and 24 are fused to uop
4; some uops are shuffled by pre-scheduling. Note that
these transformations are enabled with the help of many
prior code simplifications.

IA32 Instructions Original PARROT uops Uops after basic-transformations Uops after optimizations
0. mov eax edi
1. dec edi
2. testl eax, eax
3. je +0x14
4. mov cx [esi]
5. cmp cx, 256
6. ja 0x2c645e
7. inc esi
8. inc esi
9. jmp -23

10. mov eax edi
11. dec edi
12. testl eax, eax
13. je +0x14
14. mov cx [esi]
15. cmp cx, 256
16. ja 0x2c645e
17. inc esi
18. inc esi
19. jmp -23

20. mov eax edi
21. dec edi
22. testl eax, eax
23. je +0x14
24. mov cx [esi]
25. cmp cx, 256
26. ja 0x2c645e
27. inc esi
28. inc esi
29. jmp -23

0. eax mov (edi)
1. edi, eflags sub (edi, 1)
2. eflags and (eax, eax)
3. cond_jmp(e,eflags)
4. cx load (ds, esi)
5. eflags sub (cx, 256)
6. cond_jmp (nbe, eflags)
7. esi, eflags add (esi, 1)
8. esi, eflags add (esi, 1)
9. jmp(0x3004d8a5)
--
10. eax mov (edi)
11. edi, eflags sub (edi, 1)
12. eflags and (eax, eax)
13. cond_jmp(e,eflags)
14. cx load (ds, esi)
15. eflags sub (cx, 256)
16. cond_jmp (nbe, eflags)
17. esi, eflags add (esi, 1)
18. esi, eflags add (esi, 1)
19. jmp(0x3004d8a5)
--
20. eax mov (edi)
21. edi, eflags sub (edi, 1)
22. eflags and (eax, eax)
23. cond_jmp(e,eflags)
24. cx load (ds, esi)
25. eflags sub (cx, 256)
26. cond_jmp (nbe, eflags)
27. esi, eflags add (esi, 1)
28. esi, eflags add (esi, 1)
29. jmp(0x3004d8a5)

0. v_a(0) move (li_edi)
1. v_b(0), v_flags(0) sub (li_edi, 1)
2. v_flags(1) and (v_a(0), v_a(0))
3. assert_cond (v_flags.z(1), e, ntaken)
4. v_c(0) load(li_ds,li_esi)
5. v_flags(2) sub (v_c(0), 256)
6. assert_cond(v_flags.cz(2),nbe, ntaken)
7. v_b(1), v_flags(3) add (li_esi, 1)
8. v_b(2), v_flags(4) add (v_b(1), 1)

--
9. v_a(1) move (v_b(0))
10. v_b(3), v_flags(5) sub (v_b(0), 1)
11. v_flags(6) and (v_a(1), v_a(1))
12. assert_cond (v_flags.z(6),e, ntaken)
13. v_c(1) load(li_ds,v_b(2))
14. v_flags(7) sub (v_c(1), 256)
15. assert_cond(v_flags.cz(7),nbe, ntaken)
16. v_b(4), v_flags(8) add (v_b(2), 1)
17. v_b(5), v_flags(9) add (v_b(4), 1)

--
18. lo_eax move (v_b(3))
19. lo_edi,v_flags(10) sub(v_b(3), 1)
20. v_flags(11) and(lo_eax,lo_eax)
21. assert_cond(v_flags.z(11), e, ntaken)
22. lo_cx load(li_ds,v_b(5))
23. lo_eflags sub(lo_cx, 256)
24. assert_cond(lo_eflags(65),nbe, ntaken)
25. v_b(6),v_flags(12) add (v_b(5), 1)
26. lo_esi,v_flags(13) add(v_b(6), 1)
27. jmp (0x3004d8a5)

0. v_c(0),v_c(1), lo_cx
 3Xload(li_ds,li_esi)
1. v_b(0),v_a(1),v_b(3),lo_eax, lo_edi
 3Xsub(li_edi,1, li_edi,2, li_edi, 3)
2. jmp (0x3004d8a5)
3. lo_esi add(li_esi, 0x6)
4. lo_eflags
 sub&assert(lo_cx,256,nbe,ntaken)
5. and&assert(v_b(3),v_b(3), e, ntaken)
6. sub&assert(v_c(1), 256, nbe, ntaken)
7. and&assert(v_b(0), v_b(0),e, ntaken)
8. sub&assert(v_c(0), 256, nbe, ntaken)
9. and&assert(li_edi, li_edi, e, ntaken)

Table 3.1 Optimized trace example from SysMark 2000 Microsoft word
27
jmp

7
add

8
add

13
load

14
sub

15
assert

16
add

17
add

22
load

23
sub

24
assert

25
add

26
add

4
load

5
sub

6
assert

0
mov

2
and

3
assert

1
sub

9
mov

11
and

12
assert

10
sub

18
mov

20
and

19
sub

21
assert

Figure 3.1 Trace dependency graph after basic transforms

The corresponding reduction in dependencies and criti-
cal path length can be observed by comparing Figure 3.1,
the dependency graph after basic transformations, with
Figure 3.2, the dependency graph after optimizations.

9
and&
assert

3
add

2
jmp

1
3Xsub

7
and&
assert

0
3Xload

8
sub&
assert

6
sub&
assert

4
sub&
assert

5
and&
assert

Figure 3.2 Trace dependency graph after optimizations
Next example, presented in Table 3.2, is a trace from

gcc containing a loop with 2 unrolled iterations. As
above, columns 1, 2 and 3 of the figure present the origi-
nal trace, decoded trace and transformed trace, respec-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

tively. The 4th column shows the output of the optimizer,
in which 9 operations are eliminated (56%), 4 register
definitions are avoided (40%) and critical path length is
reduced from 7 to 5 (40%). In addition, a store operation

is avoided, the original uops 1 and 2 are eliminated, and
the load operation of uop 8 is replaced by a simple move.

IA32 Instructions Original PARROT uops Uops after basic-transformations Uops after optimizations
0. mov edx [esp+4]
1. mov [esp+4] esi
2. mov esi edi
3. mov ecx edi
4. mov edi edx
5. test edx edx
6. jnz .-16

7. mov edx [esp+4]
8. mov [esp+4] esi
9. mov esi edi
10. mov ecx edi
11. mov edi edx
12. test edx edx
13. jnz .-16

0. edx load (ss, esp, 4)
1. store_data (esi)
2. store_address (ss, esp, 4)
3. esi move (edi)
4. ecx move (edi)
5. edi move (edx)
6. eflags and (edx, edx)
7. cond_jmp(nz, eflags)

8. edx load (ss, esp, 4)
9. store_data (esi)
10.store_address (ss, esp, 4)
11. esi move (edi)
12. ecx move (edi)
13. edi move (edx)
14. eflags and (edx, edx)
15. cond_jmp(nz, eflags)

0. v_a(0) load (li_ss, li_esp, 4)
1. store_data (li_esi)
2. store_address (li_ss, li_esp, 4)
3. v_b(0) move (li_edi)
4. v_a(1) move (li_edi)
5. v_b(1) move (v_a(0))
6. v_flags(0) and (v_a(0), v_a(0))
7. assert_cond (v_flags(0), nz, taken)
--
8. lo_edx load (li_ss, li_esp, 4)
9. store_data (v_b(0))
10. store_address (li_ss, li_esp, 4)
11. lo_esi move (v_b(1))
12. lo_ecx move (v_b(1))
13. lo_edi move (lo_edx)
14. lo_eflags and (lo_edx, lo_edx)
15. cond_jmp (nz, lo_eflags)

0. v_a(0), lo_esi, lo_ecx
 load (li_ss, li_esp, 4)
1. lo_edx, lo_edi move (li_esi)
2. lo_eflags and (lo_edx, lo_edx)
3. cond_jmp(NZ, lo_eflags)
4. store_address (li_ss, li_esp, 4)
5. store_data (li_edi, 2)
6. fus_and_assert(v_a(0),v_a(0),nz,taken)

Table 3.2 Optimized trace example from SpecInt 2000 gcc

3.3. Unrolling Degree
To obtain some measure of the effects of different un-

rolling degrees on trace execution efficiency we plotted
various efficiency metrics against the number of loop
iterations unrolled in the gcc example above.

Figure 3.3 demonstrates the non-linear optimization
impact across different unrolling degrees. In this exam-
ple, optimization effectiveness rises across higher unroll-
ing degrees. However, maximum effectiveness is at-
tained with 6-fold unrolling, achieving almost 80% re-
duction. Note that about half of the impact is obtained
with only two loop iterations.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8
Num Loop Iterations

R
ed

uc
tio

n

uop reduction
dependency reduction

Figure 3.3 Impact of loop unrolling on uop and dependency
reduction in gcc trace example

4. Simulation Framework
We employ an in-house proprietary simulation envi-

ronment as a modeling and research vehicle for the
PARROT microarchitecture. The simulators are de-
signed with maximum flexibility and configurability in
order to enable comparative study of the diverse set of
microarchitectural alternatives detailed in Section 4.3, on
the diverse set of benchmark applications listed in 4.2.

The simulators are trace-driven; they simulate execu-
tion traces of applications compiled for the IA32 archi-
tecture. They implement all the components of the
PARROT microarchitecture, including the less tradi-
tional optimizer, and all of the optimizations and pre-
computations described above.

4.1. Energy Simulation
For energy simulation we employed a WATTCH-like

approach, using accurate and up-to-date data extracted
from real processors for the internal components, ensur-
ing the relevancy of our results.

The power-modeling infrastructure is based on Intel
propriety tools. These include formulas for small func-
tional blocks, each of which was closely correlated to the
corresponding hardware implemented on recent technol-
ogy. The formulas are composed of arithmetic expres-
sions involving parameters which stand for dynamic
events (i.e. counters). A formula is designed to predict
the dynamic energy consumption of the block, and its
sub-formulas cover both active and idle power.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

The methodology we developed allows us to use the
correlated formulas as building blocks, and compose
them into larger formulas describing the energy con-
sumption of higher-level units in our micro-architecture.
In this composition process we utilize three mechanisms:
instantiation, mapping and scaling. For each unit in the
microarchitectural model we instantiate a set of formu-
las that best fit the functionality and energy behavior of
that unit. For each formula we provide a mapping of its
original parameters into actual event-counters of the
simulated model. In addition, each formula is potentially
the subject of scaling representing uniform size or activ-
ity enlargements over the original block. There are sepa-
rate scaling factors for active and for idle power, repre-
senting extensions such as increased number of ports,
increased number of cache entries, etc.

Consequently, power modeling for conventional units
is relatively straightforward, whereas the power model-
ing for new units which have no similar original formu-
las (e.g., the optimizer or the trace constructor) requires
more work. For example, the power model of the opti-
mizer employs instances of buffers and tables taken from
the ROB, rename and scheduling stages of the pipeline,
scaled down to accommodate a single trace, and with
some combinations of significant optimizer events
mapped to the original execution events.

Leakage is derived from the dynamic power under
some simplifying assumptions. We assume uniform
leakage 1) in space over two coarse component types,
the processor core and the level-2 cache, and 2) in time,
modeling a consistently high temperature.

To emulate the high temperature, we choose the appli-
cation with highest average dynamic-power PMAX of the
base OOO model. This turns out to be swim of the
SpecFP suite (see below). For a component area A, we
define the uniform leakage power as A * PMAX * T,
where T is a technology constant. We use technology
constants of 5% for each MByte of level 2 cache and
40% for the standard core. These fairly large constants
are used in accordance with the technological trend of
increasing leakage. Thus, for a model with M Mbytes of
L2 cache and a core of area K times the standard OOO
core, the total leakage energy LE of an application run-
ning for CYC cycles is modeled by the formula

LE = PMAX * (0.05 * M + 0.4 * K) * CYC
This infrastructure produces energy estimations for the

different micro-architecture models and their compo-
nents, usable for global trade-off analysis. For more de-
tails on the simulation methodology and comparative
results (e.g. breakdown of energy/power consumption of

different microarchitectural components) we refer the
reader to [29].

4.2. Benchmarks
Our benchmark suite covers a wide range of optimized

application traces, 30 or 100 million instructions each.
The 30 application runs can be classified as follows:
• SpecInt 2000: bzip, crafty, gap, gcc, gzip, parser,
perlbmk, vortex (30M).
• SpecFP 2000: art, facerec, fma3d, lucas, mesa, six-
track, swim, wupwise (30M).
• Office / Windows applications from SysMark 2000:
office, powerpoint, virusscan, word (100M).
• Multimedia: flash (from SysMark-2000, 100M),
Dragon, lightwave, quakeIII, 3DsMax (light, raster and
geom), Flask-MPEG4 (custom Multimedia traces, 30M).
• DotNet: image, phong (custom applications, 100M).

4.3. Models
To investigate the influence of our thresholded dy-

namic optimizations we configured the following mod-
els. First, using our most aggressive optimizations, we
varied the number of trace repetitions which would trig-
ger trace optimization from 8 to 16K, adding one data-
point to represent a threshold of infinity under which
optimization would never be triggered. Table 4.1 sum-
marizes our models for narrow and wide cores. The mi-
croarchitectural parameters used for these configurations
are summarized in Table 4.2.

 Threshold

Core
8 64 512 4096 16384 -

Narrow N8 N64 N512 N4K N16K N-
Wide W8 W64 W512 W4K W16K W-

Table 4.1 Configurations using different blazing thresholds
Using the optimum threshold indicated by running

these models on our benchmarks, we then investigated
the contribution of each of our optimizations in isolation
to determine which are most crucial for improving power
and performance. For these experiments, we divided our
optimizations into a number of general classes:
• G: Generic (logic/flow/memory) simplifications
• S: Pre-Scheduling
• F: Uop Fusions
• X: SIMDifications

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

 Parameter N* W*
Core area (relative to base OOO) 1.4 2.4
Predictor entries (branch + trace) 2K + 2K 4K + 4K
FHR length (branch + trace) 16 + 32 16 + 32
Icache 32KB 32KB
Tcache entries 128 512
FE pipeline width (cold + hot) 4 + 4 4 + 8
ROB entries 100 150
Sched. Window 32 50
Exec. Ports 4 8
EXEC pipeline width 4 8
Hot filter (entries, threshold) 1K, 24 1K, 8
Blazing filter (entries, threshold) 1K, * 1K, *
Max uops in trace 64
Optimizations enabled *
Optimizer latency (non pipelined) 100 cycles
L1 Dcache (size, latency) 64KB, 3
L2 Ucache (size, latency) 2MB, 9
Memory latency 120
Line size (I and D) 64B
All caches (I, D, T) associativity 8-way, LRU

Table 4.2 µarch settings of narrow / wide models. The “*”
denotes free parameters varying across configurations

Table 4.3 shows a variety of optimization configura-
tions, ranging from none to most aggressive. Since the
generic optimizations are enabling for all others, they
were included with every optimizing configuration.

Optimizations Narrow Wide

none N- W-
G N_G W_G
G and F N_GF W_GF
G and X N_GX W_GX
G and S N_GS W_GS
G, F, X and S N512 W512

Table 4.3 Optimization Configurations

4.4. Metrics
We employ a variety of metrics designated to evaluate

and compare different aspects of the simulated models.
For the overall processor performance we focus on the
IPC, total energy and Cubic-MIPS-per-WATT (CMPW)
measurements. IPC and total energy are useful for under-
standing the design tradeoffs assuming the same fre-
quency and same voltage. The CMPW metric is instru-
mental in quantifying the design tradeoffs and power
awareness of a processor assuming energy consumption
could be always traded for performance using voltage or
frequency scaling [4][32].

We also present metrics related to optimizations, such
as optimized code (“blazing”) coverage, uop reduction
and optimizer efficiency (or utilization) and sensitivity.

5. Results: Blazing Filter Threshold
This section presents results on a range of thresholds

for the blazing filter. Based on the observed trends, a
threshold providing a reasonable power/performance
tradeoff is chosen as a reference point against which the
gains from various optimization configurations are com-
pared with one another in Section 6 below.

5.1. Optimizations Impact
In Figure 5.1--Figure 5.3 we observe the impact of the

blazing threshold on two major microarchitectural pa-
rameters, IPC and energy consumption, as well as its
impact on a major parameter characterizing the impact of
dynamic optimizations, namely uop-reduction. Although
there is a clear growth trend in IPC gain and energy re-
duction when the threshold gets lower, this growth is not
linear. In most cases, the observed gain diminishes sig-
nificantly below a threshold of 512.

Considering the different benchmark classes, we ob-
serve that primarily Office, and to a leaser degree Mul-
timedia and SpecInt applications obtain both perform-
ance and energy savings benefits from optimizations.
The high uop reduction on SpecFP and .NET applica-
tions is not fully realized in performance since it is
masked by high memory activity.

The wide models display consistently higher IPC im-
provement and energy savings than the narrow models.
This can be attributed to the higher uop reduction and
better availability of hardware resources, such as larger
trace cache that can store more optimized traces.

For our purposes, the number of 512 iterations serves
as a good constant threshold. Higher thresholds repre-
sent a slightly reduced benefit in overall energy and per-
formance, but this threshold delivers efficiency while
maintaining low sensitivity of overall performance and
energy to optimization latency and energy consumption.
Future studies may consider more sophisticated adaptive
filtering techniques.

IPC Improvement

0%

5%

10%

15%

20%

25%

30%

35%

D
ot

N
et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

S
pe

cI
nt

G
E

O
M

E
A

N

In
cr

ea
se

 r
el

at
iv

e
to

 n
o

op
tim

iz
at

io
ns N16K N4K N512 N64 N8

W16K W4K W512 W64 W8

Figure 5.1 IPC improvement relative to base non-optimized
models (N- and W-, respectively)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Energy Improvement

0%

5%

10%

15%

20%
Do

tN
et

M
M

ed
ia

O
ffi

ce

S
pe

cF
P

S
pe

cI
nt

G
E

O
M

E
A

N

D
ec

re
as

e
re

la
tiv

e
to

 n
o

op
tim

iz
at

io
ns

N16K N4K N512 N64 N8

W16K W4K W512 W64 W8

Figure 5.2 Energy improvement relative to base non-
optimized models

Uop Reduction

0%

5%

10%

15%

20%

25%

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

Sp
ec

In
t

G
EO

M
EA

N

Re
du

ct
io

n

N16K

N4K

N512

N64

N8

W16K

W4K

W512

W64

W8

Figure 5.3 Uop-reduction, out of all committed uops in the
non-optimized models

5.2. Optimizer Parameters
The next figures demonstrate the appropriateness of the

512 threshold with regard to finer characteristics of our
dynamic optimization model.

The blazing coverage (of optimized code) is depicted
in Figure 5.4. About 80% blazing coverage is achievable
with our 512 threshold, whereas larger thresholds incur a
sharp drop in coverage. Conversely, smaller thresholds
exhibit lower utilization of the optimizer (Figure 5.5).
The 512 threshold is sufficiently large to guarantee that
any optimized trace is executed more than 3500 times in
average on the wide models, and more than 450 times on
the narrow ones.

In Figure 5.6 and Figure 5.7 we demonstrate that the
full benefits of optimization with blazing threshold of
512 are obtained with an optimizer activated very infre-
quently: less than 50 times (8 times for wide models)
every Million committed instructions, or at most once in
11000 cycles (60000 cycles of our wide models).

This low frequency of optimizer activation indicates
low sensitivity to the actual time it takes to optimize a
trace. It also hints at the feasibility of implementing a
reasonably complex optimizer as part of a power-aware
processor core.

Blazing Trace Coverage

0%

20%

40%

60%

80%

100%

D
ot

Ne
t

M
M

ed
ia

O
ffi

ce

S
pe

cF
P

S
pe

cI
nt

G
E

O
M

E
A

N

op
tim

iz
ed

 u
op

s
ou

t o
f a

ll
ex

ec
ut

ed

N16K
N4K
N512
N64
N8
W16K
W4K
W512
W64
W8

Figure 5.4 Coverage of uops from optimized traces out of
all executed uops

Optimized Trace Utilization

10

100

1,000

10,000

100,000

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

Sp
ec

In
t

G
EO

M
EA

N

Th
ou

sa
nd

 tr
ac

e-
ex

ec
 p

er
 o

pt

N16K N4K N512 N64 N8
W16K W4K W512 W64 W8

Figure 5.5 Utilization of optimizer, measured in thousands
of executed optimized traces per optimization

Cycles Between Optimizations

1,000

10,000

100,000

1,000,000

10,000,000

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

S
pe

cI
nt

G
EO

M
EA

N

Av
er

ag
e

nu
m

be
r o

f c
yc

le
s

N16K N4K N512 N64 N8
W16K W4K W512 W64 W8

Figure 5.6 Average number of cycles between consecutive
activations of the optimizer

Optimization Frequency

1

10

100

1,000

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

Sp
ec

In
t

G
EO

M
EA

N

O
pt

im
iz

at
io

ns
 p

er
 M

ill
io

n
In

st
ru

ct
io

ns

N16K N4K N512 N64 N8
W16K W4K W512 W64 W8

Figure 5.7 Frequency of activating the optimizer (per Mil-
lion committed instructions)

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

6. Results: Optimizations Breakdown
In this section we analyze the contribution of each of

our major optimization classes using our chosen blazing
threshold of 512.

The figures below depict the IPC improvement ob-
tained by several optimization classes implemented in
the narrow and wide models, respectively. The presented
combinations include the generic optimizations (G), the
individual addition to G of each of the core-specific fu-
sion (GF), SIMD (GX) and scheduling (GS), and full
optimizations (with the 512 threshold). The results are
shown for each of the benchmark groups.

The benefit of the core-specific optimizations is a ma-
jor contribution on top of the generic ones. The IPC im-
provement (Figure 6.1) of the full optimizations more
than doubles that of generic optimizations alone, from
7.4% to 14.6% on the narrow models and from 6.1% to
17.5% on the wide ones.

IPC Contribution of Optimizations over Base

0%

10%

20%

30%

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

Sp
ec

In
t

G
EO

M
EA

N

N_G N_GS N_GF N_GX N512

W_G W_GS W_GF W_GX W512

Figure 6.1 IPC improvement over the reference, non-
optimized models N- and W-, respectively

At the same time, the energy advantage (Figure 6.2) of
the full optimizations more than triples that of the ge-
neric ones, extending it from 1% to 6.5% on the narrow
models and from 2.8% to 11.4% on the wide ones.

Energy Saving by Optimizations over Base

-5%

0%

5%

10%

15%

20%

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

S
pe

cI
nt

G
EO

M
E

AN

En
er

gy
 d

ec
re

as
e

N_G N_GS N_GF N_GX N512
W_G W_GS W_GF W_GX W512

Figure 6.2 Energy improvement (decrease) over the refer-
ence, non-optimized models N- and W-, respectively

The energy results of some benchmarks are less con-
clusive when run on the narrow models. In order to
summarize more conclusively the performance and en-
ergy tradeoffs, we produced the CMPW results for all
benchmark groups. These are presented in Figure 6.3 and
confirm the significance of dynamic optimizations in
general and of core-specific optimizations in particular,
on all models and with all benchmarks.

Power-Awareness Improvement

0%

20%

40%

60%

80%

100%

Do
tN

et

M
M

ed
ia

O
ffi

ce

Sp
ec

FP

Sp
ec

In
t

G
EO

M
EA

N

in
cr

ea
se

 in
 C

M
PW

N_G N_GS N_GF N_GX N512
W_G W_GS W_GF W_GX W512

Figure 6.3 Overall improvement in power-awareness
(CMPW) over N- or W-, respectively

7. Conclusions and Future Work
We have investigated the potential of a hardware im-

plementation of a dynamic optimizer in a power-aware
context. Our study has shown that optimizations which
are tightly coupled to the microarchitecture in substance
but not in time can provide a substantial benefit in both
performance and energy consumption.

Our filtering experiments have demonstrated that cau-
tious selection of our optimization candidates costs only
a small reduction in the power/performance benefit of
the optimizations. It also proves that considerable timing
leeway is available and allows for a simpler-design,
longer-latency and lower-power hardware optimizer im-
plementation.

We have also shown that the available benefit corre-
sponds to the original investment in optimization effort:
more aggressive optimizations yield better results in both
performance improvement and energy savings. At the
same time, exposure of the hardware characteristics to
the optimizer is essential for making significant im-
provements over those achievable by standard generic
techniques.

This finding paves the way for further studies into the
precise form a hardware optimizer should take. For ex-
ample, we can take advantage of predicted utilization of
the optimizer in order to customize our optimization
strategy by individual trace. Expected utilization may be

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

estimable from characteristics of the trace itself, or may
come from accumulated experience with the current
workload, or both. This information may then be used
for training more adaptive filters.

Although the PARROT system provides the capability
of gradual optimization, the optimization grain currently
studied is very coarse: either a trace is optimized or it is
not. A natural extension is a system with a finer optimi-
zation grain, allowing us to fine-tune the filtering-guided
optimization investment in a much more precise manner,
according to the cost and benefit of the optimizations.
Such strategies would improve our return on optimiza-
tion effort.

The actual construction of compiler-style optimization
circuitry is itself a fairly new field and further design
research will be needed to indicate the best manner to
proceed. These technologies may open a new dimension
in power-aware computing.

References
[1] V. Bala, E. Duesterwald and S. Banerjia, “Transparent Dynamic

Optimization: The Design and Implementation of Dynamo”, TR
HPL-1999-78, HP Labs.

[2] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y.
Wang and Y. Zemach, “IA-32 Execution Layer: A Two Phase
Dynamic Translator Designed to Support IA-32 Applications on
Itanium-Based Systems”, in MICRO36, Dec. 2003.

[3] B. Black and J.P. Shen, “Turboscalar: A High Frequency High
IPC Microarchitecture”, in ISCA27, June 2000.

[4] D.M. Brooks et al, “Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors”,
IEEE Micro, 20(6):36-44, Nov/Dec. 2000.

[5] G. Cai, C.H. Lim and W.R. Daasch, “Thermal-Scheduling For
Ultra Low Power Mobile Microprocessor”, in Proc. WCED’02,
2002.

[6] T. M. Conte, K. N. Menezes, P. M. Mills and B. A. Patel, “Opti-
mization of instruction fetch mechanisms for high issue rates”,in
ISCA22, Jun. 1995.

[7] K. Ebcioglu and E.R. Altman, “DAISY: Dynamic Compilation
for 100% Architectural Compatibility”, in ISCA24, pp. 26-37,
1997.

[8] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S.J.
Patel and S.S. Lumetta, “Performance Characterization of a
Hardware Mechanism for Dynamic Optimization”, MICRO34,
Dec. 2001.

[9] D. Friendly, S. Patel and Y. Patt, “Putting the Fill Unit to Work:
Dynamic Optimizations for Trace Cache Microprocessors”, in
MICRO31, Nov. 1998.

[10] M. Gschwind, E.R. Altman, S. Sathaye, P. Ledak and D. Ap-
penzeller, “Dynamic and Transparent Binary Translation”, in
IEEE Computer Magazine 33(3), pp. 54-59, 2000.

[11] Q. Jacobson, E. Rotenberg and J.E. Smith, “Path-Based Next
Trace Prediction”, in MICRO30, 1997.

[12] Q. Jacobson and J.E. Smith, “Trace Preconstruction”, in ISCA27,
pp. 37-46, May 2000.

[13] O. Kosyakovsky, A. Mendelson and A. Kolodny, “The Use of
Profile-based Trace Classification for Improving the Power and

Performance of Trace Cache Systems”, in 4th Workshop on
Feedback-Directed and Dynamic Optimization, Dec. 2001.

[14] M.S. Lam and R.P. Wilson, “Limits of Control Flow on Parallel-
ism”, in Proc. 19th ISCA, pp. 46 -57, May 1992.

[15] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank and R.A. Bring-
mann, “Effective Compiler Support for Predicated Execution us-
ing the Hyperblock”, in MICRO25, 1992.

[16] S. Melvin and Y Patt, “Enhancing Instruction Scheduling with a
Block-Structured ISA”, in Intern. Journal of Parallel Prog.,
23(3) pp 221-243, Jun. 1995

[17] M.C. Merten, A.R. Trick, C.N. George, J. Gyllenhaal, and W.W.
Hwu, “A Hardware-Driven Profiling Scheme for Identifying Pro-
gram Hot Spots to Support Runtime Optimization”, in ISCA26,
1999.

[18] M.C. Merten, A.R. Trick, E. M. Nystrom, R.D. Barnes and W.
Mwu, “A Hardware Mechanism for Dynamic Extraction and Re-
layout of Program Hot Spots”, in ISCA27, May 2000.

[19] R. Nair and M.E. Hopkins, “Exploiting instruction level parallel-
ism in processors by caching scheduled groups”, in Proc.
ISCA24, pp. 13-25, 1997.

[20] A. Parikh, M. Kandemir, N. Vijaykrishnan and M.J. Irwin,
“VLIW Scheduling for Energy and Performance” in Proc. IEEE
Workshop on VLIW, pp. 111-117. April 2001.

[21] S. Patel, M. Evers and Y. Patt, “Improving Trace Cache Effec-
tiveness with Branch Promotion and Trace Packing”, in ISCA25,
June 1998.

[22] S. Patel and S. Lumetta, “rePlay: A Hardware Framework for
Dynamic Optimization”, in IEEE Trans. on Computers, 50(6), pp
590-608, June 2001

[23] S. Patel, T. Tung, S Bose and M. Crum, “Increasing the Size of
Atomic Instruction Blocks using Control Flow Assertions”, in
MICRO33, 2000.

[24] A. Peleg and U. Weiser. “Dynamic Flow Instruction Cache
Memory Organized Around Trace Segments Independent of Vir-
tual Address Line”, U.S. Patent 5,381,533, Jan. 1995.

[25] M. Postiff, G. Tyson and T. Mudge, “Performance Limits of
Trace Caches”, in Journal of ILP, vol. 1, Oct. 1999.

[26] A. Ramírez, J. L. Larriba-Pey, C. Navarro, J. Torrellas and M.
Valero, “Software Trace Cache”, in Proc. ICS13, pp. 119–126,
1999.

[27] R. Rosner, A. Mendelson and R. Ronen, “Filtering Techniques to
Improve Trace-Cache Efficiency”, in PACT’01, Sept. 2001.

[28] R. Rosner, M. Moffie, Y. Sazeides and R. Ronen, “Selecting
Long Atomic Traces for High Coverage”, in ICS’03, pp. 2-11,
June 2003.

[29] R. Rosner, Y. Almog, M. Moffie, N. Schwartz and A. Mendel-
son, “PARROT: Power Awareness through Selective Dynami-
cally Optimized Traces”, in PACS’03, Dec. 2003.

[30] E. Rotenberg, S. Bennett and J. Smith, “A trace cache
microarchitecture and evaluation”, in IEEE Trans. on Computers,
48(2), pp 111–120, Feb. 1999

[31] B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. Muthler, J. Quek, F.
Spadini, S. J. Patel and S. S. Lumetta, “Dynamic Optimizations
of Micro-Operations”, in HPCA9, Feb. 2003.

[32] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban,
P.N. Strenski and P.G. Emma, “Optimizing Pipelines for Power
and Performance”, MICRO 35, 2002.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

