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Abstract

Dynamic optimization systems store optimized or trans-
lated code in a software-managed code cache in order to
maximize reuse of transformed code. Code caches store
superblocks that are not fixed in size, may contain links
to other superblocks, and carry a high replacement over-
head. These additional constraints reduce the effectiveness
of conventional hardware-based cache management poli-
cies. In this paper, we explore code cache management
policies that evict large blocks of code from the code cache,
thus avoiding the bookkeeping overhead of managing single
cache blocks. Through a combined simulation and analyt-
ical study of cache management overheads, we show that
employing a medium-grained FIFO eviction policy results
in an effective balance of cache management complexity
and cache miss rates. Under high cache pressure the choice
of medium granularity translates into a significant reduc-
tion in overall execution time versus both coarse and fine
granularities.

1. Introduction

Dynamic optimization systems [4, 6, 12, 20] create a
modified version of a program’s code image while it ex-
ecutes. These systems generally perform four major tasks.
First, they analyze the program’s instruction stream to deter-
mine the flow of execution. Second, they perform analysis,
translation and/or optimization on the frequently executed
code sequences. Third, they cache the transformed code
to enable reuse and reduce overhead. Finally, they execute
code directly from the code cache for the remainder of pro-
gram execution or until the code is evicted from the code
cache to make room for newly transformed code.

The benefits of dynamic optimization systems, includ-
ing just-in-time compilers [2, 5], and dynamic transla-
tors [1, 8, 11, 13], range from leveraging runtime informa-
tion for optimization to instruction generation for enabling
mobile code. Increased instruction locality and code op-

timization improves steady state performance of dynamic
optimizers, just-in-time compilers, and dynamic translators.
Offsetting this steady state performance increase is the time
required to observe runtime behavior, perform transforma-
tions, and update program code. By focusing efforts on
frequently-executed regions of a program and by maximiz-
ing the amount of time it is executed directly from the code
cache, the performance overhead can be minimized.

Because it is important to maximize the amount of ex-
ecution time spent in the code cache, the code cache man-
agement scheme should make room for newly transformed
code by evicting code from the cache that is unlikely to be
used in the future. Code cache replacement strategies can
vary from very fine grained (replace a single block of code
at a time) to very coarse grained (flush the entire cache when
it fills). Thus far, implementations have tended to use one
of these extremes. Yet there exists a wide range of middle
ground replacement policies that have not been explored.

In this paper, we analyze the trade-offs of the different
granularities and policies for evicting blocks from a code
cache. We find that the best eviction policy is one that bal-
ances code cache miss rates, eviction overheads, and design
complexity. The specific contributions of this paper are:

• An exploration of medium-grained code cache eviction
policies for balancing overhead, code space, and cache
miss rates.

• An analysis of superblock chaining within a code
cache, and a discussion of its impact on replacement
policies and runtime overhead.

• A description of the issues that complicate code cache
management in dynamic optimization systems, thus
distinguishing the problem from other domains.

The remainder of the paper is organized as follows. Sec-
tion 2 defines dynamic optimization systems, describes sev-
eral existing implementations, provides an overview of the
problem of code cache management, and discusses solu-
tions implemented in several existing systems. Section 3 de-
scribes several issues that distinguish code cache manage-
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ment from hardware cache management and paging. Sec-
tion 4 identifies components that contribute to code cache
management overhead, and evaluates the impact of eviction
granularity on that overhead. Section 5 analyzes the trade-
offs of superblock chaining and incorporates this overhead
into our evaluation, and Section 6 concludes.

2. Background

In this section, we describe several software systems
for dynamic optimization, dynamic translation, and just-in-
time compilation. We also describe the common problem
of code cache management and discuss some of the exist-
ing solutions to the problem.

2.1. Existing Systems

The goal of most dynamic optimizers is performance
improvement, though they also show promise in the areas
of program introspection, sandboxing, and security [18].
Dynamic translators focus on providing code compatibil-
ity with new or existing architectures. Finally, just-in-time
compilers support platform-independent code. Although
these systems have a variety of goals, adequate performance
is a requirement for all such systems, and this performance
generally comes from code optimization and caching.

Dynamic Optimizers Dynamo [4] is a system de-
veloped at Hewlett-Packard Laboratories that provides a
software-based mechanism for selecting and optimizing
blocks of HP-UX instructions. Several successors to Dy-
namo have since been developed, including DELI and
DynamoRIO. DELI [12] is a VLIW version of Dynamo
geared toward embedded-processor applications that was
developed by Hewlett-Packard in conjunction with ST Mi-
croelectronics. DynamoRIO [6] is a dynamic optimiza-
tion research infrastructure developed as a collaboration
between Hewlett-Packard and MIT. DynamoRIO executes
on the IA-32 architecture in both Windows and Linux.
Wiggins/Redstone [10], developed at Compaq, is a dy-
namic specialization system that applies data-specific and
machine-specific optimizations to Alpha binaries at run-
time. Finally, Mojo [7], developed at Microsoft, is a dy-
namic optimizer that was one of the first infrastructures to
specifically target large, interactive Windows applications.

Dynamic Translators Several dynamic translation sys-
tems have been developed to provide code compatibility for
new or existing architectures. FX!32 [16], developed by
Digital, allows IA-32 binaries to execute on Alpha proces-
sors. Although FX!32 does not perform dynamic optimiza-
tion in a strict sense—it optimizes between program runs—
it has many features of a true dynamic optimization sys-
tem. The DAISY [13] dynamic translator was developed at
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Figure 1. Control flow of dynamic optimization sys-
tems including a code cache and cache manage-
ment system.

IBM and allows PowerPC binaries to execute on the DAISY
VLIW architecture. A follow-up project at IBM is the BOA
framework [1] which allows PowerPC code to execute on
a VLIW/EPIC processor. Finally, the Transmeta Crusoe
processor [11] is shipped with CMS (Code-Morphing Soft-
ware) which performs binary translation from IA-32 to an
underlying proprietary VLIW architecture.

Just-In-Time Compilers and Adaptive Systems Many
just-in-time compilers have been equipped with adaptive
systems that allow code to be re-optimized during execu-
tion. For example, Jikes RVM [2] is a publicly-available
Java Virtual Machine developed at IBM Research.

2.2. Overview of Code Cache Management

Code caches are a vital element in any dynamic
optimization system, as they enable reuse of trans-
lated/optimized code, and therefore help amortize the cost
of code modification over the entire program execution.
Figure 1 illustrates the role of the code cache, as well as
code block lookup and execution in a typical dynamic op-
timization system. Generally, execution begins with an in-
terpretation step until the start of a basic block or method
is detected. At this point, the hash table (which maps orig-
inal PCs to PCs of transformed code blocks) is accessed.
A hit in the hash table results in an immediate jump to the
previously transformed block in the code cache. A table
miss for a “hot” PC value results in transformation of the
code block (translation and/or optimization), insertion into
the code cache, and finally a jump into the code cache to
execute the new code. The code cache is limited in size,
therefore in order to make room for a new block, a code
cache manager is necessary to provide the eviction policy
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for the code cache. Eviction policies for modern systems
are discussed in Section 2.3.

While Figure 1 assumes a single code cache structure,
some implementations consist of multiple code caches. Dy-
namoRIO, for example, includes two code caches. A basic-
block cache stores all single-entry, single-exit regions that
have been encountered during execution, which allows Dy-
namoRIO to avoid the high overhead of interpretation dur-
ing every execution of a basic block. Once a basic block’s
execution count exceeds a hotness threshold the system
combines basic blocks to form superblocks (single-entry,
multiple-exit regions) [17] that are stored in a separate code
cache. This idea has been extended to support multiple su-
perblock code caches that are distinguished by the lifetimes
of the superblocks they contain [15].

2.3. Existing Code Cache Policies

The simplest code cache management policy is not to
manage evictions at all, and to allow code caches to grow
without bound. This policy is not feasible in a realistic sys-
tem of course. Recent research [15] has shown that:

• Code caches tend to grow up to five times the size of
the executed application code, and

• Modern interactive Windows applications often exe-
cute over 40 MB of code during the course of a few
minutes of execution.

By combining these findings with the observation that users
tend to execute several programs at once, we can conclude
that code cache sizes are likely to be a limitation, especially
as application sizes increase. Therefore, several code cache
management policies for bounded caches have been imple-
mented in recent systems.

Dynamo employed a preemptive flushing mechanism [3]
for cache management, which detected a program phase
change and flushed the entire code cache at that point. This
policy was found to perform better than a naı̈ve flush of the
cache when it became full. The cache replacement policy
in the publicly available version of DynamoRIO defaults to
an unbounded code cache—an acceptable feature in a re-
search tool. Using an environment variable, a user may im-
pose a cache size limit, and in this case, DynamoRIO em-
ploys a fine-grained FIFO replacement algorithm, with the
code cache being implemented as a circular buffer similar
to that proposed in an earlier study [14]. While code cache
management is not explicitly discussed in the publication on
DELI [12], the authors do mention facilities for controlling
the timing of full code cache flushes, which indicates that
fine-grained cache management may not be implemented in
DELI. Finally, in Mojo [7], the superblock cache was di-
vided into two coarse-grained cache units. Each unit was
fully flushed in an alternating order (i.e. FIFO).

Code Block #1

Code Cache

Code Block #2

Code Block #3

Code Block #4

Code Block #5

Code Block #6

Code Block #7

Figure 2. Code cache with superblock links.

Other related work includes a study of code cache man-
agement by Hazelwood and M. Smith [14]. In that work,
several code cache management schemes were investigated,
and it was found that exploiting temporal locality is impor-
tant, and implementing a code cache as a circular buffer
balances the issues of miss rate and fragmentation. Our re-
search reported here extends that earlier work by exploring
eviction policies over a range of granularities, analyzing and
discussing the important issue of superblock chaining, and
extending the evaluation to include interactive applications.

3. Code Cache Management Issues

Several features of code caches necessitate more sophis-
ticated management methods than those used in hardware
instruction or data caches. In this section, we describe the
specific features of code caches and explain why hardware
cache solutions are less effective in this domain.

3.1. Superblock Chaining

One of the major performance boosts in a dynamic op-
timization system results from superblock chaining1 [4, 9].
This technique allows execution to remain inside the code
cache by chaining together superblocks that execute in suc-
cession. Good performance is achieved because it is not
necessary to return control to the dispatch system to deter-
mine the next superblock to execute. Superblock chaining
is supported by patching jump instructions to the ends of su-
perblocks residing inside the code cache. Figure 2 depicts a
code cache containing links between elements.

Eviction of superblocks can result in dangling link point-
ers unless there is a method for determining and eliminating
incoming links. For example, to evict code block #4 from
the code cache in Figure 2, there must be a way to determine

1We refer to the overall process as “chaining”, and to individual point-
ers as “links”.
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Figure 3. Size distribution of superblocks in
SPECint2000 and Windows benchmarks.

that code block #1 is currently linked to code block #4, so
the link can be removed before evicting code block #4. Oth-
erwise, code block #1 will contain a dangling link pointer,
which will result in incorrect program execution. Therefore,
for any cache management policy to ensure code correct-
ness, it must provide support for removing any incoming
link pointers to eviction candidates.

A common solution to this problem is to provide a side
table of back pointers. Before evicting a code block from
the cache, the eviction mechanism can look in the back-
pointer table to determine all other code blocks that are
linked to the eviction candidate. These incoming links can
be removed before proceeding with eviction. Unfortunately,
this table carries runtime overhead for lookups and takes up
memory that could otherwise be used for code caching. A
back-pointer table is unnecessary in code caches that imple-
ment a full flush eviction policy, as all links will be flushed
along with the code blocks. Therefore, code cache manage-
ment policies must take into account the performance and
memory requirements of supporting link removal.

3.2. Superblock Regeneration Overhead

Servicing code cache misses is different from servicing
hardware cache misses because elements stored in a code
cache do not exist in their identical form anywhere else; that
is, there is no backing store. Servicing a code cache miss re-
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Figure 4. Median superblock size (in bytes) of
SPECint2000 and Windows benchmarks.

quires regeneration of the cached code, which carries a very
high overhead. The specific steps that must be completed
before execution of the source program can resume are:

1. Save the processor state of the running program
2. Re-optimize/re-translate the next sequence of instruc-

tions from the source program
3. Store the altered instructions in the code cache
4. Update any hash tables and links
5. Restore the processor state of the executing program

Studies have shown that this process takes on the order
of 50,000 instructions for a typical SPEC2000 superblock in
the DynamoRIO system [15]. Due to this high code regen-
eration overhead, designers of dynamic optimization sys-
tems go to great lengths to minimize code cache misses.

3.3. Variable-Size Cache Entries

An important property of code caches that distinguishes
them from conventional hardware caches is that the cached
elements vary in size rather being fixed-length blocks. As
Figure 3 illustrates, the size of superblocks stored in the
code cache varies significantly. In fact, Figure 4 shows that
the median superblock size varies—often significantly—
between individual benchmarks.

Variable superblock sizes mean that an LRU or an LRU-
like eviction algorithm would lead to internal fragmentation
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in the code cache. To make matters worse, compaction (to
remove fragmentation) would require adjusting all the link
pointers. Consequently, in the following sections, we fo-
cus on FIFO algorithms, which, with circular buffer code
cache implementations, do not lead to internal fragmenta-
tion. Furthermore, FIFO replacement policies are widely
implemented in modern code caches [14, 15].

4. Exploring Granularities

There is an important trade-off with respect to evicting
code from a code cache. Evicting a single superblock at a
time will minimize the miss rate, but will lead to relatively
high overhead for two reasons. First, there is some fixed
overhead in invoking the eviction code, no matter how many
superblocks are evicted. Evicting single superblocks will
lead to a high number of invocations and therefore a large
amount of fixed overhead. Second, as we shall see, evicting
single elements tends to maximize the number of dangling
links that must be fixed via a back-pointer table.

At the other end of the spectrum, one can employ the
cache management scheme where the entire cache is flushed
when either (a) the cache becomes full, or (b) when a pro-
gram phase shift is detected. This policy will greatly reduce
the fixed overhead of invoking eviction, and it will eliminate
the need to adjust link pointers. However, flushing the cache
will result in noticeably higher miss rates, as was shown in
prior work [14].

In this section, we explore the spectrum of eviction gran-
ularities, including the middle ground between flushing the
entire cache and eliminating a single element. We refer
to this middle ground as medium-grained code cache evic-
tions, and we illustrate the idea in Figure 5. As this figure
indicates, the cache is partitioned into cache units of equal
size, each containing several code blocks. Now, instead of

evicting a single code block, an entire cache unit is evicted
at a time, leaving enough room for several individual code
blocks to be inserted before the code cache manager must
be re-invoked.

4.1. Experimental Approach

To better understand the trade-offs of evicting small vs.
large code regions, we studied the impact of eviction gran-
ularity on cache miss rates and eviction overheads.

Our experimental setup involved the use of the Dy-
namoRIO dynamic optimization system and a code cache
simulator. We used both the Windows and Linux versions
of DynamoRIO release 0.93. The Windows environment
was Windows 2000 Server and the Linux environment was
Red Hat version 7.2. We used the PAPI [19] performance
counter interface to the Pentium processors to collect the
overhead estimates. In addition, we used the verbose output
from DynamoRIO to drive the code cache simulator; there-
fore we were able to represent the actual code regions that a
code cache would manage including actual region sizes and
inter-region links. We were able to save and reuse the Dy-
namoRIO logs to allow for repeatability in the experiments.

Table 1 lists the benchmarks used, including all 12
SPECint2000 benchmarks which were run on Linux and
eight interactive Windows applications that were driven by

Table 1. Benchmarks used in our evaluation. The
middle column lists the number of hot superblocks
that must be managed in the code cache.

Name Superblocks Description

gzip 301 Compression
vpr 449 FPGA Place+Route
gcc 8751 C Compiler
mcf 158 Combinatorial Optimization

crafty 1488 Chess Game
parser 2418 Word Processing

eon 448 Computer Visualization
perlbmk 2144 PERL Language

gap 667 Group Theory Interpreter
vortex 1985 Object-Oriented Database
bzip2 224 Compression
twolf 574 Place+Route

iexplore 14846 Web Browser
outlook 13233 E-Mail App

photoshop 9434 Photo Editor
pinball 1086 3D Game Demo

powerpoint 14475 Presentation
visualstudio 7063 Development Env

winzip 3198 Compression
word 18043 Word Processor
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Figure 6. Miss rates at varying granularities. Cache
pressure fixed at 2.

manual user interaction performing everyday tasks. Inter-
active applications are particularly important in code cache
studies because prior work [15] has shown that the rate and
amount of generated code in these applications tests the lim-
its of code cache management systems.

We focused on the cache management policy for man-
aging frequently-executed superblocks. In DynamoRIO, a
superblock is considered hot when it has been executed 50
times. The middle column of Table 1 lists the total num-
ber of hot superblocks produced during execution of each
benchmark; this is the total number of superblocks that must
be managed by the code cache at runtime.

4.2. Effect of Granularity on Cache Miss Rates

In practice, the size of a dynamic optimizer’s code cache
is generally fixed for all applications. The effect is that code
cache management strategies result in bimodal cache per-
formance. For applications that fit within the code cache,
the choice of code cache management policy makes no dif-
ference. However, for applications that do not fit within the
code cache, performance can suffer precipitously. We are
most interested in studying code cache management behav-
ior when it is being stressed, i.e. when the program working
set exceeds the size of the code cache. Therefore, for all re-
sults in this paper, the code cache is sized to ensure that the
replacement mechanism will be stressed.

For all results, the code cache eviction granularity was
varied from a full code cache flush down to the finest-
grained FIFO eviction policy, which evicts only enough su-
perblocks to make room for the inserted superblock. To
ensure code cache pressure, the size of the entire code
cache was set to be maxCache/n, where maxCache is
the size that the code cache would reach if it was al-
lowed to grow without bound for the particular benchmark,
and n is a cache pressure factor that we impose in or-
der to ensure that the cache management policy is truly
stressed. The maxCache term ranges from 171 KB for the
smallest benchmark—gzip—where 301 superblocks were
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cached, to 34.2 MB for the largest benchmark—word—
where 18,043 superblocks must be cached. For our studies,
we vary the cache pressure factor from 2 to 10.

A weighted average was used to calculate a single cache
miss rate across all benchmarks. The weighted average was
determined using Equation 1.

unifiedMissRate =

word∑

i=gzip

(cacheMissesi)

word∑

i=gzip

(cacheAccessesi)

(1)

As was suggested earlier, the code cache miss rate is ex-
pected to increase as the grain size for evictions increases.
This was verified using the code cache simulator, and the
results are shown in Figure 6 for a code cache sized at
maxCache/2. The leftmost bar represents the coarsest
granularity possible—treating the cache as a single unit and
flushing it entirely. Moving to the right, the cache is split
into two equally-sized cache units and each is flushed sep-
arately in a FIFO fashion. Finally, the rightmost bar repre-
sents the case where each individual superblock is treated
as a single eviction unit, and only enough superblocks are
evicted to make room for the new one being inserted. As
the figure illustrates, miss rates decline as the cache evic-
tions become more fine grained.

Figure 7 then shows how the miss rate of each evic-
tion granularity scales under pressure. As the figure indi-
cates, the differences in miss rates become much more pro-
nounced as cache pressure increases. However, miss rates
tell only part of the story.

4.3. Effect of Granularity on Code Cache Evictions

Reduction in miss rate through fine-grained cache evic-
tions is balanced by the increased overhead of performing
more evictions. Figure 8 shows the impact of eviction gran-
ularity on the number of times that the eviction mechanism
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must be invoked. The values shown in Figure 8 are relative
percentages with the baseline set to the number of times that
eviction would be necessary had a fine-grained, minimum-
element eviction scheme been implemented. It is interest-
ing to note that moving from the finest-grained FIFO to a
slightly coarser 64-unit eviction policy increases the miss
rate only slightly (Figure 6) but the number of evictions de-
creases by nearly a factor of 3 compared to the fine-grained
implementation (Figure 8).

Next, we used the PAPI performance counter inter-
face [19] to study the actual overhead of code cache evic-
tions in the DynamoRIO framework. We collected a log
of over 10,000 code cache evictions, including their evic-
tion size (in bytes) and the number of instructions required
to perform the eviction. We then used a least-squares lin-
ear regression trendline (illustrated in Figure 9) to develop
Equation 2.

evictionOverhead = 2.77 ∗ sizeBytes + 3055 (2)

This equation tells us the average number of instructions re-
quired to evict a superblock of a given size (in bytes) from
the code cache. An eviction of 230 bytes of code, for exam-
ple, would require 3,690 instructions. Interestingly, Equa-
tion 2 shows that the main factor contributing to the over-
head of evictions is the start-up cost (i.e. the constant term
3055 in the equation) and the dependence on the number of
bytes evicted is a much less substantial portion of the over-
head. This implies that it is advantageous to evict larger
blocks of code from the code cache.

We then repeated the process of inserting PAPI instruc-
tion counters to determine the expected overhead of a cache
miss. We did so by collecting data on superblock genera-
tion, code cache insertion, and hash table updates as they
occurred in DynamoRIO. Using this methodology, we de-
termined the overhead estimate shown in Equation 3.

missOverhead = 75.4 ∗ sizeBytes + 1922 (3)

This equation tells us the expected overhead of a code cache
miss for a superblock of a given size (in bytes). We see from

y = 2.7667x + 3055.4
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Figure 9. Overhead, measured in instruction count,
for code cache evictions.

this equation that the size of the superblock plays a much
larger role in the overhead of a cache miss (as compared to
Equation 2) because superblock formation itself is highly
dependent on the amount of code that must be modified and
cached. Servicing a cache miss for a 230-byte superblock,
therefore, tends to require 19,264 instructions.

By combining the instruction penalty of eviction (Equa-
tion 2) with the instruction penalty of a cache miss (Equa-
tion 3), we can begin to understand the overhead trade-offs
of code cache eviction granularity.

4.4. Effect of Granularity on Overhead

We introduced the notion of overhead penalties to the
code cache simulator and re-executed the benchmarks to
study the trade-offs encountered as the code cache granu-
larity is varied. We used the overhead penalties defined in
Equations 2–3, and limited the maximum code cache size
to maxCache/10 as described in Section 4.2.

The results are shown in Figure 10 normalized to the
coarsest-grained policy (FLUSH). This figure exhibits sev-
eral interesting trends. The eviction policies on the far left
perform worst because their high code cache miss rates are
not offset by the reduction in the number of evictions. Mov-
ing to finer-grained evictions, there are reductions in over-
head as a result of the improvement in hit rate. However,
moving to the finest-grained eviction policies results in an
increased overhead due to frequent invocations of the cache
eviction mechanism.

Figure 11 shows how the overhead of cache eviction
scales as cache pressure increases from a factor of 2 up to a
factor of 10. Again, all results are relative to the coarsest-
grained FLUSH mechanism. It’s interesting to note that
the finest-grained policy starts out performing better than
FLUSH, but as cache pressure increases, its performance
decreases until it eventually begins to perform worse.

Several observations can be made at this point. First,
there is clearly a delicate balance between reducing cache
misses and reducing eviction overhead. While fine-grained
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Figure 10. Relative overhead of various code cache
eviction granularities including miss rate overhead
and eviction overhead. The code cache is sized at
maxCache/10.

cache eviction minimizes the miss rate, it also maximizes
the number of evictions that must occur. Second, while the
finest-grained eviction policy performs much better than a
coarse-grained flush under low cache pressure, the scenario
reverses under high cache pressure. Therefore, at this point
our results indicate the the most robust and scalable eviction
policy is to aim for medium-grained evictions.

There is an additional factor that must be considered be-
fore making concrete conclusions about the benefits of vari-
ous code cache eviction granularities, however. Superblock
chaining—as described in Section 3.1—is a subtle feature,
but one that could result in a significant difference in the
complexity of the eviction mechanism, which could skew
the resulting runtime overhead.

5. Analysis of Superblock Chaining

As discussed in Section 3.1, one of the advantages of
the full cache flush mechanism is that there are no dangling
links resulting from individual superblock deletions. As the
code cache is flushed, all superblock links are eliminated si-
multaneously with the cached code. Therefore, there is no
need to maintain a table of link back-pointers. This elimi-
nates both the memory required for the back-pointer table
and the overhead to maintain it. Yet, in Section 4.4, we
found the miss rate of the full flush mechanism is higher
than with other granularities.

Since we are exploring partitioning the code cache into
several units, each of which will be flushed entirely, we
can still achieve some of the superblock chaining bene-
fits of the full flush mechanism. Several superblock links
will be eliminated as an entire cache unit is flushed, there-
fore back pointers are unnecessary for those intra-unit su-
perblock links—links that connect two code blocks resid-
ing in the same cache unit. However, there are two options
when dealing with inter-unit superblock links—those that
span cache unit boundaries. We can provide a back-pointer
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Figure 11. Relative overhead of eviction granulari-
ties as cache pressure increases.

table exclusively for those inter-unit links, or we can elim-
inate inter-unit chaining from the code cache management
system altogether.

5.1. Characteristics of Superblock Links

In this section, we begin by investigating the feasibility
of eliminating inter-unit links (links that span the bound-
aries of a cache unit and therefore must be removed when
the unit is flushed.) Intuitively, there are two scenarios
where it would be feasible to eliminate inter-unit superblock
links. The first situation would occur if superblock chain-
ing was not highly beneficial to runtime overhead. In this
case, the elimination of the back-pointer table and its subse-
quent maintenance overhead would outweigh the benefits of
chaining. The second situation would occur if there turned
out to be a very small number of inter-unit superblock links,
such that even if the benefits of chaining were high, the
case of inter-unit superblock chaining was so rare that it
made sense to eliminate the memory and runtime overhead
of maintaining back-pointer tables.

We begin by providing perspective on the memory foot-
print required to support back-pointer tables. We collected
the average number of outbound links from each cached su-
perblock and show the results in Figure 12. As the figure
indicates, there are an average of 1.7 links originating from
each superblock. Combining this with the observation that
each back pointer requires roughly 16 bytes of memory2,
we can determine that the memory overhead of a complete
back-pointer table is generally 11.5% the size of the code
cache.

Next, we provide a concrete perspective on the bene-
fits of superblock chaining. To this end, we executed the
SPEC2000 benchmarks3 under the control of DynamoRIO
with and without superblock chaining enabled on a dual-

2In a linked list–an 8-byte pointer and an 8-byte link.
3Interactive application results were not included in this study. We were

not equipped to measure the important interactive metric–response time.
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Figure 12. Average number of outbound links orig-
inating from each superblock.

Xeon 2.4 GHz machine with 1 GB RAM. The results,
shown in Table 2, are quite compelling. While the median
execution time of gzipwith chaining enabled was 230 sec-
onds for the reference inputs, disabling chaining resulted
in a execution time of 7,951 seconds—a dramatic 3357%
slowdown. The cost is not in the hash table lookup but is
caused by the memory protection changes (and associated
system calls) that the DynamoRIO system does in order to
protect the translation manager from the user code. In sys-
tems where this is not necessary, the slowdown is reduced,
but is still significant.

At this point, the first scenario has been eliminated from
our feasibility study on removing back pointers—we have
shown that superblock chaining is crucial to runtime per-
formance, and removing superblock chaining altogether is
not an option.

Table 2. Slowdown resulting from disabling su-
perblock chaining. Benchmarks were executed
under the control of DynamoRIO on Linux.

Benchmark
Linking
Enabled

Linking
Disabled

Slowdown

gzip 230 sec 7951 sec 3357%
vpr 333 sec 2474 sec 643%
gcc 206 sec 3284 sec 1494%
mcf 368 sec 2014 sec 447%

crafty 215 sec 3547 sec 1550%
parser 350 sec 6795 sec 1841%

perlbmk 336 sec 6945 sec 1967%
gap 195 sec 4231 sec 2070%

vortex 382 sec 4655 sec 1119%
bzip2 287 sec 4294 sec 1396%
twolf 658 sec 6490 sec 886%
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Figure 13. Percentage of superblock links that tar-
get superblocks in different cache units.

5.2. Interconnectivity of Superblock Links

The previous section took an extreme approach and de-
termined the impact of eliminating all superblock links from
the dynamic optimizer’s code cache in order to provide a
perspective on the impact of superblock chaining. What is
really important for our investigations, however, is to deter-
mine the impact of removing only the inter-unit superblock
links, as the contrasting intra-unit superblock links will be
eliminated upon flushing the unit and therefore are not prob-
lematic.

Figure 13 shows the percentage of links that span the
cache unit boundaries. There are no inter-unit links in the
FLUSH scheme because the entire cache is a single unit.
However, as the cache is split into two separate units, 24.3%
of the links now span unit boundaries. On the right side
of the figure, we note that although the FIFO mechanism
places each individual superblock in a separate unit, not all
links span unit boundaries because a superblock can link
to itself (i.e. a loop). This now removes the second sce-
nario from the back-pointer elimination feasibility study—
we have shown that even with only two cache units, a non-
trivial number of links span the unit boundary. Now that
we have determined that a back-pointer table is unavoid-
able in all but the case of the full flush mechanism, we
extend the analytical overhead study to include the over-
head of maintaining a back-pointer table and removing link
pointers upon cache evictions.

Using once again the methodology from Section 4.3, we
inserted PAPI instruction count monitors around the Dy-
namoRIO code that removes incoming link pointers to an
eviction candidate. Equation 4 approximates the overhead
of removing a given number of links pointing to an evicted
superblock.

unlinkingOverhead = 296.5 ∗ numLinks + 95.7 (4)

We note that a large part of the overhead in Equation 4 can
be directly attributed the to the number of links that must be
removed from an eviction candidate. Therefore, minimiz-
ing this number is in our best interest. Since we showed that
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Figure 14. Relative overhead including cache miss
penalties, eviction penalties, and superblock link
maintenance. Cache size set to maxCache/10.

eliminating links results in a significant decrease in perfor-
mance, our best bet is to minimize the number of inter-unit
superblock links that occur. As Figure 13 showed, this is
achieved by increasing the grain size for evictions.

5.3. Resulting Impact on Overhead

We introduced superblock link maintenance overhead
(shown in Equation 4) to the code cache simulator and re-
executed the benchmarks. For each cache eviction, the sys-
tem was penalized for every inter-unit link that required re-
moval. This resulted in the final overhead estimates, shown
in Figure 14. One observation from this figure is that the
overheads of all of the finer-grained policies have moved
closer to FLUSH as a result of inter-unit superblock links.
This is a result of the penalty for maintaining inter-unit links
that is unnecessary in FLUSH. The largest changes occurred
in the finer-grained policies, as they contained more inter-
unit links than the coarser-grained policies.

Figure 15 shows the performance of each granularity un-
der increasing cache pressure. Again we see the same trend
where fine-grained FIFO starts out performing better than
FLUSH, but the situation reverses as pressure increases. The
main difference between Figure 15 and the earlier Figure 11
is that the introduction of link removal increased the over-
head of all policies except FLUSH.

In high cache pressure circumstances, the overhead of
cache management becomes a dominant factor in the over-
head of a dynamic optimization system. To provide a per-
spective on the overhead reductions shown in Figures 14
and 15, we calculated the potential impact on final exe-
cution performance, using the calculated instruction over-
heads, the measured CPI, and the processor clock fre-
quency. With a cache pressure factor of 10, benchmarks
such as crafty and twolf experience a 19.33% and
19.79% reduction in overall execution time, respectively,
by simply changing the eviction granularity from FLUSH
to 8-Unit FIFO. In practice, we expect applications that
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Figure 15. Relative overhead (including link main-
tenance) as cache pressure increases.

stress the cache management system to experience higher
changes in execution time than others.

5.4. Discussion

We can conclude that a policy where the code cache
manager evicts medium-grained units from the cache can
outperform both the fine-grained FIFO eviction policy
and the coarse-grained FLUSH policy. Compared to a
fine-grained policy, the expected increase in miss rate of
medium-grained evictions is offset by a reduction in evic-
tion invocations and reduced link pointer maintenance. This
results in a smaller number of code cache management in-
terruptions, a smaller back-pointer table for maintaining
link pointers, and as the estimates suggest, improved run-
time performance. These results bring us one step closer
to the end goal of designing robust, scalable dynamic opti-
mization systems by understanding the inputs and trade-offs
involved in choosing a code cache eviction policy.

While the actual trade-offs may vary slightly by system
implementation, we feel that the insight gained from this
work will be useful for dynamic optimization system de-
signers as they consider the options for code cache manage-
ment and recognize that they should not limit their options
to the extreme eviction granularities.

Currently, we advocate treating the cache as a circular
buffer and inserting elements in FIFO order to leverage the
temporal locality of the code cache accesses. Our future
work includes a more detailed analysis and visualization of
the interconnectivity of superblocks within the cache. This
study will help us to determine whether a better method ex-
ists for determining the placement of superblocks into the
cache units to minimize inter-unit superblock links while
still achieving low miss rates.

Other future work includes an investigation of a cache
management strategy that dynamically adjusts the eviction
granularity on-the-fly, based on the perceived cache pres-
sure.
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6. Conclusions

Code cache management policies have been primarily
limited to two extreme granularities. To make room for
new superblocks in the cache, they evicted either the mini-
mum necessary to make room for the new superblocks, or
they flushed the entire cache. Using trace-driven simulation
driven by the cache accesses and overheads of an existing
dynamic optimizer, we explored several intermediate gran-
ularities of code cache evictions.

Through a combination of simulation and analytical
means, we investigated the factors that make up the over-
head of code cache management. We determined that the
major contributor to cache eviction overhead is a fixed cost
to invoke the eviction mechanism, which indicated that it is
advantageous to evict larger regions from the code cache at
a time. We also determined that implementation details of
superblock chaining make a significant impact on the mem-
ory and runtime overhead of the implemented eviction pol-
icy. In the end, we concluded that medium-grained code
cache evictions are the most scalable under pressure, ul-
timately resulting in a balance between cache miss rates,
cache management complexity, and runtime overhead.
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