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Abstract

To meet the high demand for powerful embedded pro-
cessors, VLIW architectures are increasingly complex (e.g.,
multiple clusters), and moreover, they now run increasingly
sophisticated control-intensive applications. As a result, de-
veloping architecture-specific compiler optimizations is be-
coming both increasingly critical and complex, while time-
to-market constraints remain very tight.

In this article, we present a novel program optimization
approach, called the Virtual Hardware Compiler (VHC),
that can perform as well as static compiler optimizations,
but which requires far less compiler development effort,
even for complex VLIW architectures and complex target
applications. The principle is to augment the target proces-
sor simulator with superscalar-like features, observe how
the target program is dynamically optimized during execu-
tion, and deduce an optimized binary for the static VLIW
architecture. Developing an architecture-specific optimizer
then amounts to modifying the processor simulator which
is very fast compared to adapting static compiler optimiza-
tions to an architecture. We also show that a VHC-optimized
binary trained on a number of data sets performs as well
as a statically-optimized binary on other test data sets. The
only drawback of the approach is a largely increased com-
pilation time, which is often acceptable for embedded appli-
cations and devices. Using the Texas Instruments C62 VLIW
processor and the associated compiler, we experimentally
show that this approach performs as well as static compiler
optimizations for a much lower research and development
effort. Using a single-core C60 and a dual-core clustered
C62 processors, we also show that the same approach can
be used for efficiently retargeting binary programs within a
family of processors.

1. Introduction and Related Work

In this article, we present a novel approach for deriving
a scheduler for a complex architecture in very little time
and effort. The main drawback of the technique is that com-
pilation time is much longer than in traditional compilers.
However, in embedded systems, compilation is usually an

off-line process performed before the system is delivered to
the end-user, so that long compilation times can be accept-
able. And in any case, even if the VHC optimizer is later
replaced with a traditional compiler, the VHC approach
can significantly improve time-to-market by quickly pro-
viding a scheduler based on the existing architecture sim-
ulator. Moreover, the approach can be also applied to high-
performance computers and any performance-intensive pro-
gram which is not frequently modified/recompiled.

VLIW architectures rely on efficient compiler technol-
ogy to extract ILP and schedule instructions. Currently,
most compiler optimization techniques rely on a machine
model embedded in the compiler. However, as hardware
complexity increases (e.g., cluster-related issues [29], vari-
able latencies, irregular VLIW instruction encoding con-
straints [31] or operand path constraints) embedding an ac-
curate and reliable machine model in a compiler is increas-
ingly difficult, which, in turn, limits the efficiency of purely
static optimization techniques. That embedded applications
are no longer restricted to simple DSP-like kernels but are
inching toward high-level programmed applications with
pointer analysis issues [22], complex control-flow and com-
plex memory behaviors further complicates the static opti-
mization approach.

For that reason, dynamic or dynamically-assisted com-
piler optimizations have received increased attention in the
past few years. The principle is to use run-time informa-
tion to fine-tune static program transformation parameters
(e.g., unrolling factor, tile size) and thus to compensate
for the lack of accuracy of the embedded machine model.
While program performance is improved, the overall com-
piler development effort is about the same (or sometimes
even greater) than for purely static compiler optimization
techniques. Moreover, most of the research work on profile-
based and feedback-directed compilation [8, 9, 27, 15] has
focused on demonstrating the potential performance of the
approach, rather than on finding practical ways to imple-
ment them. The difficulty is to show that it is possible and
how to aggregate program behavior statistics over several
runs in order to derive a program version that can perform
well over a range of target data sets [14]. For that rea-
son, profile-based and feedback-directed optimization tech-
niques are not much used in practice, even though they have
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been implemented in commercial compilers [4, 5]. Iterative
compilation [11, 37] is a similar approach which highlights
the potential benefits and limitations of dynamic optimiza-
tion techniques: based on an exhaustive or smart search of
the static transformation parameter space, it can find very
efficient program versions but requires many runs of the
same program on the same data set; it is both more effi-
cient and even less practical to use. A more practical way
to use dynamic information is dynamic compilation, as pro-
posed in DAISY [18], FX!32 [13], Dynamo [10], Mojo [12]
and more recently in DELI [17]. The principle is to collect
run-time information but to use it immediately to modify the
program binary. Also, Vachharajani et al. [37] have recently
proposed a method intermediate between iterative and dy-
namic compilation which consists in deriving at compile-
time several program versions and pruning versions at run-
time. Overall, these techniques are more practical and can
be as efficient as profiled-based compiler optimizations, but
they require a rather complex run-time environment to sup-
port them; in embedded systems where memory resources
are scarce and cost constraints are strict, this environment
may become an excessive overhead.

Almost all the above techniques consist in using tradi-
tional static compiler optimizations (at the source or binary
level) and feeding them with run-time information in one
way or another. In other words, the compiler development
effort for all these techniques remains quite high. To allevi-
ate this difficulty, several intermediate approaches propose
to combine program transformations with hardware-based
mechanisms to (often speculatively) optimize programs at
run-time without incurring the hardware cost of out-of-
order superscalar processors. Code Morphing in the Cru-
soe [16] speculatively optimizes translated x86 binary code,
DISVLIW processors [26] dynamically schedule and group
instructions within VLIW words at run-time by taking into
account run-time dependencies, and Region Slips [35] use
the trace-based rePlay [32] framework to build and cache
static speculative schedules at run-time. Unlike software
dynamic optimization techniques, these combined hard-
ware/software techniques have access to the processor in-
ner workings, i.e., the available dynamic information is not
limited to the narrow interface provided by hardware coun-
ters or other dedicated sampling mechanism. And more im-
portant, part of the transformation effort is given to the ar-
chitecture, much like in superscalar processors.

In this article, we present a novel approach, called the
Virtual Hardware Compiler (VHC), for quickly optimiz-
ing program schedules on statically controlled VLIW-like
architectures. The principle is to find an efficient instruc-
tion schedule by running the binary code on a cycle-level
simulator of the target VLIW architecture augmented with
superscalar-like dynamic reordering features, and monitor-
ing the schedules induced by the dynamic scheduling mech-
anism of this modified architecture. The different observed
dynamic schedules are combined to find the most appro-

priate static schedule, and a new static binary code is gen-
erated. Even though the Virtual Hardware Compiler is a
purely software approach, it does not rely on static pro-
gram transformations driven by dynamic information as
in profile-based, feedback-directed or dynamic compilation
techniques. On the contrary, it works almost exactly like the
hardware scheduling techniques used in out-of-order super-
scalar processors, so that it dynamically/implicitly adjusts
to even complex architectures, unlike static or profile-based
optimizations such as Trace Scheduling [21]. But unlike
combined hardware/software or pure hardware optimiza-
tion techniques, it requires absolutely no hardware support.
The VHC approach bears some similarity with the Software
Trace Cache proposed by Ramirez et al. [33] in the sense
that it emulates a hardware optimization using a purely soft-
ware approach. Unlike many profile-based and feedback-
directed compilation techniques, the VHC approach is de-
signed to easily aggregate the statistics of several runs. And
we experimentally show that VHC-optimized programs per-
form as well as statically-optimized programs in average
over several test data sets, distinct from the VHC training
data sets.

This technique has three major assets: (1) the main one is
that building an optimizing compiler (the scheduling part)
for a target architecture takes no more time than writing
the dynamically scheduled version of the statically sched-
uled processor simulator which, for the TI C62, took about
30 man-days; (2) the schedule simultaneously takes into ac-
count several dynamic phenomena like cache misses or con-
ditional branch behavior which are typically difficult to har-
ness using static optimizations [23]; while embedded pro-
cessors currently have few such dynamic features, they may
become widespread in high-performance embedded proces-
sors as performance requirements increase, e.g., cache and
branch predictions in the Intel XScale processor [3]; (3)
we find that a VHC-optimized binary performs similarly,
in average, than a statically optimized binary. In addition,
the VHC can be used to improve design-space exploration,
since it can provide an estimate of program performance on
an intermediate design as if a target optimizer were already
available. Finally, small application-specific processor ven-
dors who cannot always afford significant optimizer efforts
might be interested in a low-cost optimizer approach based
on their simulators.

Since we make almost no assumption on the program
or the architecture, we can apply this technique to a wide
range of applications, including control-intensive applica-
tions, and a large range of architectures, from complex
VLIW architectures with heterogeneous and irregular fea-
tures to in-order superscalar architectures. Using the Texas
Instruments C62 VLIW processor, we have experimentally
shown that this Virtual Hardware Compiler can perform
as well as static optimizations on SpecInt programs with-
out the hassle of developing an architecture-specific back-
end static optimizer. Moreover, when the Virtual Hardware
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Compiler is applied on top of classic static optimizations, it
can further improve program performance by 11% in aver-
age on the TI C62 by taking into account dynamic behav-
ior such as cache misses or conditional branches, without
the need for sophisticated static analysis as with profiled-
based techniques. Using the C60 and C62 processors, we
also show how the Virtual Hardware Compiler approach
can also serve as a retargetable framework for a family of
VLIW processors based on the same ISA. Retargeting then
amounts to augmenting the simulator of the new proces-
sor then plugging it into our environment, i.e., the retarget-
ing effort is of the order of user retargetability in Leupers’s
classification [30].

The article is organized as follows: in Section 2, we
present the principles of the Virtual Hardware Compilation
mechanism, in Section 3 the experimental framework, and
in Section 4, we provide experimental evidence of the per-
formance of our approach by comparing the Virtual Hard-
ware Compiler performance on two TI processors against
the TI compiler; we have also applied the VHC to another
processor platform (the Alpha 21164 in-order superscalar
processor) and another compiler platform (a combination
of the SUIF [38] front-end and the SPAM [7] back-end).

2. The Virtual Hardware Compiler

Building a virtual dynamically scheduled processor. In
short, we want our statically scheduled processor to behave
like an out-of-order superscalar processor. For that purpose,
we need to add to the architecture (in fact, to the architecture
simulator) a number of features usually found in superscalar
processors. However, a major difference with real architec-
ture design is that we do not have the constraint of truly
implementing a dynamically scheduled processor architec-
ture. On the contrary, we need to add these dynamic features
while retaining all the latencies and architecture specifics of
the original statically scheduled processor. Therefore, we
can exploit this relative freedom to implement a more sim-
ple dynamic reordering mechanism than the one found in
real architectures.

Consider a standard VLIW architecture in Figure 1(a);
the corresponding “augmented” dynamically scheduled ar-
chitecture is shown in Figure 1(b). The main new compo-
nents are: an instruction window, a set of reservation sta-
tions and register renaming logic. Unlike in a true super-
scalar architecture, we can release a number of constraints:
a large and fully-associative instruction window, a large
number of fully-associative reservation stations, no output
bus conflict, branch prediction is perfect, and there is no
need for a reorder buffer (ROB) to implement in-order com-
mits since true dependencies (registers and memory) are
naturally preserved during code generation. On the other
hand, unlike in a true superscalar processor the number of
physical registers is necessarily the same as the number of
logical registers. However, in order to accommodate vari-

ous program transformations, we do need to have a regis-
ter renaming mechanism. Moreover, unlike in some super-
scalar processor implementations, register renaming cannot
be implicit, i.e., handled by the architecture using reserva-
tion stations or a ROB, it must be explicit and reflected in
the newly generated binary. Finally, we need to preserve a
number of constraints which reflect the original architec-
ture such as functional units latencies, cache or other mem-
ory data structure latencies, original pipeline structure, and
the maximum number of register reads and writes per cy-
cle.

Generating a new binary based on dynamic scheduling.
Once the virtual dynamically scheduled processor simulator
is available, we can use it as a software scheduler. In a first
step, the original binary is executed. During execution, we
monitor which instructions are executed in parallel: more
precisely, which instructions are issued to the functional
units in the same cycle. Each such set of instructions is
termed an instruction pattern and recorded. Progressively,
we build a dictionary of all patterns and their frequency of
occurrence. Consider the example in Figure 2; Figure 2(a)
shows the operations control flow (each operation instance
is identified by a unique identifier Ik, much like a PC), and
Figure 2(b) how operations are grouped in VLIW instruc-
tions and statically scheduled by a traditional compiler. On
the virtual superscalar version of the VLIW processor, op-
erations are independently and dynamically scheduled, re-
sulting in multiple different schedules during execution, as
shown in Figure 2(c), e.g., pattern I2//I5 does not corre-
spond to one of the initial VLIW words.

After execution, on a second step, we use the collected
dictionary to generate a new binary. First, we sort basic
blocks by their frequency of occurrence. We then pick the
most frequently occurring sequence of consecutively exe-
cuting basic blocks (1, 2 or 3 in our experiments) and want
to find a coverage of this basic block sequence using the in-
struction patterns in the dictionary, i.e., intuitively rewrite
the basic blocks as suggested by dynamic scheduling. For
that purpose, we sort instruction patterns that only contain
instructions of these basic blocks by both their frequency of
occurrence and size (number of instructions). Then, we con-
sider the first pattern in the two sorted lists: if they match,
we select it as it is both large (it exploits ILP) and frequently
occurring; then we consider the first 2 patterns in each list
and select any as yet unselected intersection pattern; then,
we consider the first 3 patterns and so on until all the in-
structions in the basic blocks are covered by one of the in-
struction patterns. The selected instruction patterns are the
VLIW words of the new optimized binary code. In the ex-
ample of Figure 2, BB1→BB2 is the most frequently exe-
cuted path. The dictionary of all patterns observed during
execution that only contain instructions of these two ba-
sic blocks is listed in Figure 2(d) by frequency of occur-
rence and size. The coverage algorithm starts, the first item
in each list are distinct, but the first two items have a non-
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Figure 1. Original and “superscalarized” VLIW architectures

I1 LD  R1 <− R2, R2
I2 ADD R3 <− R1, R1
I3 NOT R6 <− R4
I4 BEQ R5, label

I5 XOR R8 <− R7, R9
I6 ADD R10<− R8, R8

I7 AND R9 <− R8, R6
I8 SUB R11<− R9, R1

I6   NOP    NOP   NOP

I5   NOP    NOP   NOP

I4   NOP    NOP   NOP

I2   NOP    NOP   NOP

I3   NOP    I1    NOP

I1 // I3
I2 // I5
I4 // I6

BB1 + BB2
optimized code

LD R1 // NOT R6 // MOV R11, R8
ADD R3 // XOR R8
BEQ R5

MOV R8, R11
AND R9
SUB R11

ADD R10

LD R1 // NOT R6 // CMPQ R15, R5, R0
ADD R3 // [R15] XOR R8
[!R15] AND R9 // [R15] ADD R10
[!R15] SUB R11

Figure 2. Example of Virtual Hardware Compilation

empty intersection {I1//I3}, which is selected, then the
scope of the match is progressively extended until all op-
erations are covered. For the sake of completion, all single
operations are added at the bottom of the lists. The result-
ing optimized code is shown in Figure 2(d).

Since dynamic reordering can move instructions across
basic block boundaries, the VHC must either support predi-
cated instructions if available (see Figure 2(f)), or add re-
covery code, as for operation I5 in Figure 2(e), which
is moved above conditional branch I4, as in trace or su-
perblock scheduling [21, 25]. In either case, the VHC needs
to have registers for predication or backing up values. Since

the VHC optimizes at the binary level, registers have al-
ready been allocated, so it must find “locally available” reg-
isters. For that purpose, we use a simple heuristic: a register
is considered “locally available” in a sequence of instruc-
tions starting with instruction Is and ending with instruc-
tion Ie if the register is not used in any instruction of the se-
quence, and if it is written the first time it is used in all the
possible paths of the control flow graph following Ie. Con-
sider again the example of Figure 2(f), and let us first as-
sume the processor supports predication. Then, we need to
find an available register to act as predication register for op-
eration I5. In our example, register R11 is neither read nor
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written in BB2 (we also assume it is written the first time
it is used after BB2) and it is written in BB3, so it is lo-
cally available and can serve as a predication register (as-
suming predication registers are general-purpose registers
as for the Texas Instruments C62), see Figure 2(f). Let us
now assume the processor does not support predication. If
we execute I5 and branch I4 is taken, the value of R8 is in-
correct, so we need to backup the value of R8, and R11 can
serve as a backup register. We insert the code motion guard
MOV R11, R8 in BB1, and the corresponding recovery
code MOV R8, R11 in BB3 in case the executed path is
BB1,BB3 instead of the scheduled target path BB1,BB2
(see Figure 2(e)). In this step, we verify that true dependen-
cies are preserved and we add NOPs to build VLIW words
and to hide instruction latencies.
Load/Store alias analysis. The binary-level load/store alias
analysis proposed by Fernandez et al. [20] has been partially
implemented in the Virtual Hardware Compiler. They have
demonstrated that it is possible to perform efficient specula-
tive alias analysis on binary programs, sometimes at the cost
of inserting recovery code. Only the safe version of their
analysis is currently implemented in the VHC because the
unsafe version requires a larger amount of recovery code
and thus free registers. The safe method computes a sym-
bolic expression of the load and store addresses and deter-
mines if these expressions are equivalent if possible. The
unsafe method is based on profiling and consists in checking
that two pointers address apparently non-overlapping mem-
ory regions; because the unsafe method is speculative, it re-
quires the addition of recovery code.
Aggregating the statistics of several data sets. In order to
build a binary that would perform well over a range of data
sets, we want to somehow aggregate the information gath-
ered over several runs. We will later discuss in Section 4
on the generality and performance stability of this binary;
in this paragraph, we are solely concerned with the method
for aggregating the information.

In the VHC, aggregating information is particularly easy,
because the way we build the code is already based on the
aggregated information of several executions of the same
basic blocks. Since these executions may indifferently be-
long to the same run (same data set) or several runs (sev-
eral data sets), to aggregate the information of several runs,
we only need to merge the statistics of the dictionary of
each run. Thus, if the same pattern is found in several
dictionaries, we can combine the statistics of the differ-
ent dictionaries. To combine dictionaries, we simply add
up the pattern frequencies from the different dictionaries.
Figure 2(g) shows the dictionaries of two data sets, and the
corresponding aggregated dictionary. For instance, pattern
I1//I3//I5 has a frequency of 3 in the dictionary of data
set 1, 6 in the dictionary of data set 2, and thus 9 in the ag-
gregated dictionary.
Correctness of the generated program. Program correct-
ness is achieved by construction, the true dependencies are

preserved, system calls and exception handling code are not
optimized. Naturally, an instruction pattern may not be valid
over all executions (e.g., an instruction in the target block
of a branch has been moved above the branch which is not
taken). It is the role of the recovery code to ensure correct-
ness. Recovery is possible because whenever an instruction
that is moved modifies a register, this register is backed up.
The local availability of registers determines how much re-
covery code can be added. When it is not possible to add a
recovery code because registers are not available, the pro-
gram is simply not modified.

Also, the dictionary may not always contain patterns that
only contain instructions of the 1, 2 or 3 considered ba-
sic blocks. In that case, we simply do not optimize the cor-
responding block. We are currently exploring sliding basic
block windows to increase the optimizing opportunities.
Optimizations implicitly performed by the Vir-
tual Hardware Compiler. Not surprisingly, an analysis of
the optimized binaries shows that the VHC optimizations
are fairly similar to some static compile-time optimiza-
tions: the VHC implicitly unrolls loops with the appropriate
unrolling factor and moves instructions to hide long laten-
cies, and it exploits ILP across basic blocks by speculating
on the most probable branch path. While the main as-
sets of the VHC over static optimizations is fast and easy
development and automatic adjustment to complex archi-
tecture behavior, the VHC still has unique optimization
capabilities that either give it a performance edge or com-
pensate for the lack of more sophisticated static optimiza-
tion techniques.

(a) The VHC can unroll program regions that do not
necessarily correspond to true source-code loops; any pro-
gram region where the program stays long enough can be
viewed as a “local” loop and is implicitly unrolled, how-
ever complex its control flow structure. Consider for in-
stance the set of basic blocks in Figure 3(a), and assume the
program frequently iterates over the sequence BB1,BB2,
BB4. In a superscalar processor or the VHC, the instruc-
tion window will contain multiple consecutive instances of
this sequence, in effect unrolling the sequence and implic-
itly interpreting it temporarily and locally as a loop. Conse-
quently, the VHC can hide latency and exploit ILP in pro-
gram regions that evade static analysis, which is especially
useful in complex control-intensive programs. Still Lavery
and Hwu [28] showed that they can apply modulo schedul-
ing to some complex control-flow regions.

(b) The VHC implicitly exploits correlation among mul-
tiple architecture characteristics (cache misses, con-
ditional branch behaviors, . . . ). Doing the same with
profile-based optimizations can be tedious: not only simul-
taneously exploiting multiple profiling information in static
program transformations can be fairly complex, but signif-
icant architecture-specific profiling research work is also
needed to understand the correlation among profiling statis-
tics. Consider the example of Figure 3(b): the LD in-
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Instructions of BB1

Instructions of BB2

Instructions of BB4

Instructions of BB1

Instructions of BB2

Instructions of BB4

Figure 3. Implicit Virtual Hardware Compiler optimizations

struction in basic block BB1 has 20% misses; in 80% of
the cases, BB1 branches to BB2 so a profile-based op-
timizer and the VHC will choose to optimize for the
BB1,BB2 path. If the memory latency is high, e.g., 40 cy-
cles, then Amdahl’s Law suggests to schedule the
BB1→BB2 sequence assuming the LD misses, and that is
what a profile-based optimizer relying on cache miss statis-
tics would do. However, if it appears that the misses only
occur in the 20% cases where BB1 branches to BB3, the
best option is to schedule BB1→BB2 assuming LD hits.
In the VHC, it will implicitly happen: the schedule corre-
sponding to the case where LD misses and the sequence
BB1→BB2 is executed will never occur, the VHC dictio-
nary will only contain patterns corresponding to two cor-
relation cases: LD hits and the sequence BB1→BB2 is
executed, or, LD misses and the sequence BB1→BB3 is ex-
ecuted

3. Experimental Framework

Architectures, compilers and simulators. Most of the ex-
periments are based on the Texas Instruments C6x family of
embedded VLIW processors, and more specifically the C60
(also called Omap) and the C62 (TMS320C6000 DSPs fam-
ily [6]). The C60 is a VLIW processor that executes 4 op-
erations/instructions per cycle (4 functional units); it has 16
general-purpose registers, two of which can serve as pred-
icating registers. The C62, see Figure 4, is a clustered ver-
sion of the C60 with two cores linked by a crossbar for
accessing the remote register. A core can read up to two
remote registers per cycle and only arithmetic/logic func-
tional units can perform remote reads. Unlike in other ver-
sions like the C64, forwarding of remotely read operands is
not enabled in the C62 which further constrains static in-
struction ordering.

For the two target processors (C60 and C62), we used the
C62x simulator developed by Cuppu [36] from which we
have derived a C60 simulator, and the Texas Instruments
Code Composer Environment 2.2 (the Texas Instruments
compiler). We used 150-million instruction traces to build
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the dictionaries; the trace starts when the first instruction of
the most time-consuming procedure is executed for the first
time. In order to execute the Spec benchmarks on the TI,
we use the standard C libraries provided by TI in their Code
Composer Environment; some system calls had to be modi-
fied to enable correct execution. Non-optimized binaries are
obtained with -o0, -mu (disables software pipelining), and
-g/-s (disables optimizations between C statements like con-
stant propagation); note that register allocation, dead code
elimination and interblock dependency analysis are still ac-
tive. Optimized binaries are obtained with -o3 (includes un-
rolling and software pipelining) and -pm (program-level op-
timizations). We measured that the execution time speedup
of optimized binaries over non-optimized binaries is 1.13 in
average on the Alpha using the HP cc compiler; these re-
sults are consistent with the official Spec statistics [2].

To build the out-of-order versions of the TI and Alpha
processors for the VHC, the TI and Alpha simulators were
augmented with the following dynamic reordering features
(see Figure 1): a 5000-entry fully-associative instruction
window, 100-entry fully-associative reservation stations per
functional unit, perfect branch prediction.

To validate and compare the VHC against another com-
piler platform, we used a combination of two publicly avail-
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Benchmark Data sets

Gzip Ref, Train, Test: Spec data set
Iso: filesystem file
Bin: /usr/bin from Linux system

Parser Ref, Train, Test: Spec data set
Gcc doc: gccc compiler documentation
Web page: slashdot mainpage

Eon Ref, Train, Test: Spec data set
Sphere: 150x150 pixels sphere
Table: 300x300 pixels table in a corner

Crafty Ref, Train, Test: Spec data set
Chess1: layout with full board (depth going from 1 to
max/2)
Chess2: layout with half the whites and full blacks
(depth going from 1 to max)

Twolf Ref, Train, Test: Spec data set
HP: layout taken from the MCNC project
Xerox: layout taken from the MCNC project

FIR Ref: TI sample - 100x100 image
Image1: 320x200 black and white image
Image2: 320x200 color image

FFT Ref: Ref: TI sample - 500 random values
Set1: 500 complex random values
Set2: 1024 complex random values

IDCT Ref: TI sample - 50x50 matrix
Set1: 100x100 matrix of random simple precision val-
ues
Set2: 100x100 matrix of random simple precision val-
ues

Gouraud Ref: TI sample - 3d object
Sphere: 320x200 pixels with 1 light source to shade
on 1 texture
Cube: 320x200 pixels scene with 1 light source to shade
on 3 textures

Table 1. Benchmarks and data sets

able compilers: SUIF [38] for the front-end combined with
SPAM [7] for the back-end targeting to the C62. Finally, we
also applied the VHC to the Alpha 21164, an in-order su-
perscalar processor, using the SimAlpha [1] simulator and
the Alpha commercial compiler.
Benchmarks and data sets. The benchmarks are the sub-
set of the control-intensive SpecInt 2000 suite (Crafty,
Eon, Gzip, Parser, Twolf) that we could compile
and run successfully on all platforms. We also used a sec-
ond set of more simple DSP-like benchmarks from Texas
Instruments: FIR, FFT, IDCT and Gouraud. The
AVG bar on all graphs corresponds to the average perfor-
mance over all benchmarks.

With respect to data sets, to our knowledge, there is
no widespread benchmark suite with multiple data sets per
benchmark. Therefore, we elaborated on the SpecInt suite,
and besides the test, train, ref data sets, we built
several additional data sets for each benchmark, see Table 1,
and we built a similar data set suite for the TI benchmarks;
for instance, for gzip we used Linux kernel binaries and
an iso file segment as additional data sets. To have reason-
ably different data sets, we profiled the programs with each
data set and checked that the IPC of the most frequently
used procedures differ by 10% or more from one data set
to all others. In the future, we will explore whether Eeck-
out et al. [19] method for analyzing data set distance is use-
ful for the VHC experiments.

For each benchmark and for each data set, we have de-

rived an optimized binary using the VHC. In the different
experiments we always test the VHC on a given data set af-
ter having trained it with the remaining data sets. The test
data set is never one of the training data sets unless other-
wise explicitly specified. For each graph and each exper-
iment within a graph, the VHC performance for a given
benchmark is the average performance over all possible
combinations of training+test data sets; the number of pos-
sible combinations is equal to the number of data sets (a
combination is n − 1 training data sets and 1 test data set,
where n is the number of data sets for the benchmark: from
3 to 5).

4. Performance Analysis

In this section, we first provide general performance re-
sults for the VHC, then analyze various parameters and ap-
plications of the VHC.
A VHC-optimized binary is no less general than a stat-
ically optimized binary. Figure 5 shows the VHC perfor-
mance for each train/test data set combination, i.e., unlike
in the other graphs of this section, the VHC performance is
not averaged over all data set combinations (the terms “train
data set” and “test data set” should not be confused with
Train and Test data sets of the Spec2000 benchmarks).
We find that the average performance of a VHC-optimized
binary is usually similar or higher than the performance of a
statically optimized binary. Moreover, we find that the per-
formance variance of the VHC and the static optimizer are
fairly close, which means that the performance stability of
the VHC across a range of data set is about the same as that
of the static optimizer.

These experiments contradict the common wisdom that
program optimizations based on dynamic data perform well
only on very similar data sets and that the resulting program
is less general than a statically optimized program. Looking
at the workings of many static optimizations, this result is
not all that surprising. In fact, static optimizations set values
such as load latencies or branch outcomes either arbitrarily
or using static analysis based on the architecture model em-
bedded in the compiler. For instance, when a load is sched-
uled as if it would hit in cache, static optimizations spec-
ulate on the load behavior; the same for branch outcomes
and other architecture or program-related instructions be-
haviors. In the VHC these values are similarly set, except
that they are set based on dynamic data; while this data will
vary from one data set to another, many loads (and many
branches,. . . ) will have a similar behavior across data sets
so that the VHC choices are likely to be more informed than
the speculative static compiler choices in many cases, es-
pecially if the architecture is complex and the architecture
model embedded in the compiler is not accurate enough.

Now, this discussion has important practical conse-
quences: there is no reason why a VHC-optimized bi-
nary cannot be used for a large range of data sets just like
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Gzip benchmark Eon benchmark Parser benchmark

Crafty benchmark Twolf benchmark IDCT benchmark

FFT benchmark FIR benchmark Gouraud benchmark

Figure 5. VHC performance across data sets

a statically optimized binary, as demonstrated by the ex-
periments of Figure 5. In other words, the VHC can be
used as a true optimizing compiler and can be just as reli-
able performance-wise as a static optimizing compiler.

VHC versus static optimizations+profiling. The TI com-
piler can perform profile-based optimizations; unlike the
VHC, it cannot aggregate profiles across multiple data sets,
so the train data set is the test data set. Therefore, some
of the experiments of Figure 6 are biased in favor of the
TI compiler. We provide three sets of experiments with the
VHC: the case where the train data sets is just the test data
set as for the TI compiler, the case where all data sets are
used for training including the test data set, and the case
where all data sets are used for training except the test data
set, as in all the other experiments of this section. We find
that even in the latter case which is the least favorable for
the VHC, the VHC outperforms the TI compiler with profil-
ing. In static compilers, profiling information is fed to one

or a few static optimizations in a pre-determined manner,
while in the VHC, the dynamic behavior of the architec-
ture can affect the whole instruction schedule, and implic-
itly, dynamic information is exploited in a broader way.

Impact of block lookup and number of registers. Fig-
ure 7 shows the VHC performance for intra-block and inter-
block (2 and 3) optimization, see Section 2. Intra-block
performs relatively poorly as expected, because there are
few optimizing opportunities; on the other hand, inter-block
optimization improves program performance by 27% and
more in average over the non-optimized versions, and it out-
performs the TI static compiler optimizations (often with 2
blocks, always with 3 blocks).

However, increasing the number of target basic blocks
beyond 3 did not bring significant performance improve-
ments because too few registers are available to insert ad-
ditional recovery code. More generally, the number of reg-
isters as well as register availability in target basic blocks
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Figure 6. Virtual Hardware Compiler versus profile-
based static optimizations

strongly determine VHC performance. For instance, the
VHC achieves slightly lower speedups on a C60 Omap pro-
cessor because this processor has only 16 registers com-
pared to 32 in the C62, see Figure 8. Unless otherwise
specified, we use inter-block optimizations with 3 blocks
throughout the experiments of the section.

Figure 7. Virtual Hardware Compiler versus static
optimizations on the C62; inter-block optimizations
over 1, 2 or 3 blocks

Reducing optimized code size.
Recovery code overhead. As explained in Section 2, the
Virtual Hardware Compiler must insert recovery code in
order to perform inter-block optimizations, and as a re-
sult, optimized code size increases. If a given set of ba-
sic blocks is scarcely executed, adding recovery code will
not increase performance but it always increases code size.
Therefore, we want to preferentially apply inter-block opti-
mizations to the most frequently executed basic blocks, and
limit useless code size increase. For that purpose, we de-
fine a recovery code overhead threshold which is the max-

Figure 8. Illustrating the register constraint with the
C60

imum code size increase tolerated. Whenever this thresh-
old is reached, the optimization process stops. Figures 9
and 10 show the performance and code size increase of the
Virtual Hardware Compiler for different threshold values.
Usually performance increases with the threshold size be-
cause more basic blocks are optimized. However, the more
basic blocks are optimized, the more likely some of the
branch path predictions will prove wrong, and the more
overhead code is executed (in the wrong paths), the lesser
the performance. Consequently, even in terms of perfor-
mance only, there is an optimum value for the overhead
threshold, see Figure 9, graphs TI C62 w/o opt. +
VHC C62 10, 20, 30%.

Figure 9. Comparing different recovery code tech-
niques (speedup)

Predicated instructions. Using predicated instructions in-
stead of recovery code can reduce the amount of overhead
code but it can also increase the number of executed instruc-
tions and thus degrade performance, see Figures 9 and 10.
The TI processor has predicated instructions but experi-
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Figure 10. Comparing different recovery code tech-
niques (code size increase)

ments show that the predicated version of the optimized bi-
nary generated by the VHC performs no better than the ver-
sion with recovery code. The predicated version is not quite
as effective as expected on the TI processor because this
processor has only 2 general-purpose registers per cluster
available for predication. As a result, only few instructions
can be predicated which, in turn, limits the length of the ba-
sic block sequence that can be reordered. For instance, with
parser, only 2 blocks can be reordered in average (7% of
the code) versus 3 blocks with recovery code (15% of the
code).
A hybrid technique. While the VHC approach calls for
additional registers for predication or recovery code, we
naturally cannot expect such architecture modifications in
the short term. As a result, we investigated a hybrid ap-
proach for architectures with a limited number of registers
(general-purpose or predication registers). This approach
combines both predication and control code to schedule
with the lowest possible code size increase. Predication is
applied first whenever possible, and recovery code is in-
serted only if no more predication register is available. Fig-
ures 9 and 10 show that this approach yields good per-
formance and reduced code size increases for almost all
benchmarks compared with the recovery code approach,
see graphs TI C62 w/o opt. + VHC C62 hybrid
10,20,30%. In some cases like gzip the hybrid tech-
nique usually outperforms the two other techniques. In other
cases like IDCT, the VHC even generates a smaller code
than the TI compiler because some static optimization tech-
niques (unrolling, software pipelining,. . . ) can significantly
increase code size. In all other experiments, the VHC bars re-
fer to the hybrid technique; for the training data set, we used
the optimum threshold, and then for the test data set, a fixed
threshold corresponding to the average optimum threshold
over all the trained data sets.
Retargeting the Virtual Hardware Compiler. In order to
illustrate the ability of the VHC to rapidly adjust to ar-

Figure 11. The Virtual Hardware Compiler as a re-
targeting tool

chitecture modifications, we have considered two different
versions of the C6x processor: the C62 dual-core proces-
sor used in previous sections with a crossbar between both
cores, and a simpler version, the C60 Opale, a single-core
version of the C62 processor without any crossbar. While
both processors come with their own compiler, the main dif-
ference between both tools is essentially crossbar-oriented
optimizations in the C62 compiler.

The experiment consists in generating a binary for the
C60 processor using its dedicated compiler, and then op-
timizing this binary for the C62 dual-core processor using
the VHC only, i.e., without using the C62 compiler. Implic-
itly, we want to show that the VHC can be quickly retar-
geted as a processor family evolves, that it can adjust to
complex architecture modifications and still generate effi-
cient code. Figure 11 shows that whether the VHC is ap-
plied to non-optimized or optimized C60 binaries, in aver-
age, it performs slightly better than the C62 compiler. Since
the C60 and C62 processor simulators were fairly similar,
”superscalarizing” the C62 after the C60 required only 14
man-days, i.e., retargeting the VHC to the C62 was very
fast.
The Virtual Hardware Compiler as a complement to
traditional static compilers. As mentioned above, the abil-
ity to rapidly adjust to complex architectures is the strong
asset of the VHC approach. On the other hand, static com-
pilers sometimes perform complex program transforma-
tions, such as loop fusion, that are beyond the capabilities
of the VHC. Consequently, both techniques are sometimes
complementary. In Figure 12, we have applied the VHC
on top of their respective static compilers for the TI C60,
TI C62 and Alpha processors, and compared the static com-
piler performance against the static compiler combined with
the VHC. As expected, programs with complex dynamic be-
haviors like the SpecInt benchmarks benefit most from the
additional optimizations, improving performance by 10% in
average for TI C62 and Alpha.
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Figure 12. Virtual Hardware Compiler combined
with static optimizations

Figure 13. Virtual Hardware Compiler on other ar-
chitecture and compiler platforms.

Other architecture and compiler platforms. In order to
evaluate the VHC approach on more than one architecture
and compiler, we have built a compiler platform using a
combination of SUIF [38] for the front-end and SPAM [7]
for the back-end (SPAM is a retargetable open-source back-
end for which a TI C62 version was already available), and
we have also applied the VHC to the Alpha using SimAl-
pha as the base simulator and the HP cc compiler. Figure 13
confirms that the performance improvements and variations
are fairly similar with these platforms and with the TI.
Optimization time. Naturally, optimization time is the
main drawback of the VHC approach. Since optimiz-
ing actually means simulating a program on one or
preferably multiple data sets using a cycle-level simu-
lator, optimization time evaluates in hours versus sec-
onds for a traditional compiler. VHC compilation includes
two phases: the most time-consuming phase is the sim-
ulation phase which runs at a few hundred thousand in-
structions per second (typical cycle-level simulator speed),

and it is followed by a coverage and binary transforma-
tion phase.

We currently use 150-million instruction traces to build
the dictionaries, and the trace starts when the first instruc-
tion of the most time-consuming procedure is executed for
the first time. In the future, we will explore the impact of
the SimPoint technique proposed by Sherwood et al. [34]
who have shown that it is possible to extract representa-
tive program behaviors from a 100-million instruction trace
provided the trace starting point is carefully chosen. Such
a technique can potentially improve the dictionary accu-
racy. In addition, DiST [24] can further speedup simulation
by a factor of 20 or more at a loss of accuracy less than
5% by distributing simulation over several machines. Com-
bining these different techniques to speedup Virtual Hard-
ware Compilation could progressively widen its scope be-
yond embedded applications and general-purpose applica-
tions where compilation time is not critical.

5. Conclusions

In this article, we have presented the Virtual Hardware
Compiler, a technique for quickly optimizing a program for
statically controlled VLIW-like architectures, which con-
sists in augmenting the target processor simulator with
superscalar-like features. Using the TI C62 processor, we
have shown that this technique can perform as well or bet-
ter than static compiler optimizations. The main asset of the
VHC is the small effort required to build a targeted opti-
mizer, compared to a classic static optimizer.
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