
Compiler Optimization of Memory-Resident Value
Communication Between Speculative Threads

Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan�, and Todd C. Mowry
School of Computer Science �Department of Electrical & Computer Engineering
Carnegie Mellon University University of Toronto

Pittsburgh, PA 15213 Toronto, Ontario M5S 3G4

ABSTRACT
Efficient inter-thread value communication is essential for improv-
ing performance in Thread-Level Speculation (TLS). Although sev-
eral mechanisms for improving value communication using hard-
ware support have been proposed, there is relatively little work on
exploiting the potential of compiler optimization. Building on re-
cent research on compiler optimization of scalar value communica-
tion between speculative threads, we propose compiler techniques
for the optimization of memory-resident values.

In TLS, data dependences through memory-resident values are
tracked by the underlying hardware and preserved by re-executing
any speculative thread that violates a dependence; however, re-
execution incurs a large performance penalty and should be used
only to resolve data dependences that are infrequent. In contrast,
value communication for frequently-occurring data dependences
must be very efficient.

In this paper, we propose using the compiler to first identify
frequently-occurring memory-resident data dependences, then in-
sert synchronization for communicating values to preserve these
dependences. We find that by synchronizing frequently-occurring
data dependences we can significantly improve the efficiency of
parallel execution. A comparison between compiler-inserted and
hardware-inserted memory synchronization reveals that the two tech-
niques are complementary, with each technique benefitting differ-
ent benchmarks.

1.. INTRODUCTION
Hardware support for Thread-Level Speculation (TLS) proposed

in previous work [1, 8, 10, 12, 13, 15, 19, 24, 28] empowers the
compiler to parallelize general-purpose programs despite their use
of pointers, runtime inputs, complex data structures and control
flow. Under TLS, the compiler partitions the program into par-
allel speculative threads (a.k.a. epochs) without having to prove
that they are independent, allowing instructions to be fetched and
executed long before their data and control dependences are re-
solved. The underlying hardware checks whether inter-epoch de-
pendences are satisfied and re-executes any epoch for which they
are not. Thus, we are able to parallelize programs that were previ-
ously non-parallelizable.

Since speculation failure incurs a high cost it should only be in-
voked occasionally. We must seek alternative methods to deal with
frequently occurring data dependences. One way to avoid spec-
ulation failures caused by data dependence violations is to syn-
chronize frequently-occurring data dependences. Figure 1 shows
a loop example that the compiler has speculatively parallelized by
turning each loop iteration into an epoch. In each epoch a value is
loaded through the pointer p and another value is stored through the
pointer q. When p in a later epoch points to the same memory loca-

tion as q in an earlier epoch, there is a read-after-write dependence.
Figure 1(b) and 1(c) show two methods to communicate a value be-
tween the two epochs to satisfy this dependence. The first method
is speculation: the consumer epoch executes assuming there is no
data dependence with previous threads and is re-executed if the
hardware detects a dependence violation. The second method is
synchronization: the consumer epoch stalls and waits for the pro-
ducer epoch to produce and forward the correct value. Synchro-
nization serializes parallel execution and only allows partial over-
lap between parallel epochs, but is more efficient than speculation
when data dependences occur frequently since restarts are avoided.

The existence of aliases between memory accesses makes it more
difficult to synchronize accesses to memory-resident values than
accesses to scalar values. Previous work on compiler optimiza-
tion for inter-epoch value communication [32] focuses on commu-
nicating register-resident scalar values. It shows that: (i) compiler-
inserted synchronization and forwarding can communicate scalar
values efficiently between epochs; and (ii) instruction scheduling
techniques are essential for reducing the critical forwarding path
created by such synchronization. However, these techniques cannot
be directly applied to communicate memory-resident values since
the compiler is unable to identify the producer and the consumer of
a data dependence statically. Figure 3(a) shows three epochs run-
ning speculatively in parallel. Load *p can potentially depend on
any of the five stores in the figure, although each access to the mem-
ory uses a different pointer. The compiler must prove that load *p
depends on store *q in all possible executions before synchronizing
the two instructions and directly forwarding a value between them.
Such a proof is difficult and sometimes impossible to construct. If
the compiler decides to synchronize store *q and load *p without
such a proof, we must confirm at runtime that (i) p and q refer to
the same memory location, and that (ii) stores through pointers y
and z do not modify this location.

Previously, a number of studies [8, 18, 25] propose using hard-
ware implementations to dynamically insert synchronization for
frequently occurring and unpredictable data dependences in TLS.
Moshovos et. al. [18] demonstrated how to identify frequently
occurring data dependences with a centralized structure. How-
ever, a centralized structure can limit performance [11] and is dif-
ficult to scale. On the other hand, the distributed version of this
scheme is complex since it involves replicating the tables which
predict/synchronize load-store pairs and keeping them coherent via
broadcast. In a distributed environment, it is relatively easy for the
hardware to dynamically identify loads that frequently cause spec-
ulation to fail using hardware lookup tables, but more involved for
the hardware to identify the corresponding stores. For the hard-
ware to dynamically identify an inter-epoch dependence pair it has
to (i) compare the addresses accessed by loads and stores in dif-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

do �
work1();
� � � = *p;

work2();
*q = � � � ;
work3();

� while (1);

(a) Code with
communication
through memory-
resident values.

restart

restart

restart

store *q

store *q

load *p
load *p

E1
E2

E3

load *p
load *p

load *p

p==q
violate

p==q
violate

(b) Communicating through speculation: if p and q
alias between epochs then the later epochs are vio-
lated and restarted with the correct value.

st
al

l

st
al

l

E1
E2

E3

load *p

load *p

signal
store *q

signal
store *q wait

wait

T
im

e

(c) Communicating through synchronization: the
later epochs always stall until the value is available.

Figure 1: Performance trade-off of using speculation versus synchronization under TLS.

ferent epochs, and (ii) dynamically determine whether a store is
the last store that modifies an address in an epoch. To avoid this
complexity, recent proposals for hardware-inserted synchroniza-
tion [8, 25] choose to delay the load instructions until previous
epochs have committed. However, such simplification tends to
over-synchronize parallel execution, trading time spent on failed
speculation for time spent on synchronization. In contrast, com-
pilers have the advantage of knowing the entire program, thus can
determine which stores are more likely to produce the desired value
and, therefore, only stall the consumer until the value is produced
(rather than waiting for the entire producer epoch to complete).
Compilers can also schedule instructions to produce the forwarded
value early to reduce synchronization time. Furthermore, compiler-
inserted synchronization avoids hardware complexity by eliminat-
ing lookup tables used by hardware proposals to identify frequently
occurring loads.

1.1 Our Approach: Compiler-Inserted Synchro-
nization for Memory-Resident Values

In this paper, we propose to use the compiler to insert explicit
synchronization to communicate values more efficiently for inter-
epoch data dependences that occur frequently. In our approach, we
first identify frequently occurring data dependences using profiling
information, then insert signal and wait instruction pairs, the same
synchronization primitive as sued for synchronizing communicat-
ing scalars [32], to create point-to-point synchronization and to for-
ward the values involved in the dependences. We also describe the
hardware support required to verify that the synchronized load and
store are indeed dependent at runtime and to guarantee recovery
from incorrect execution if they are not. Details of this hardware
support are in Section 2.2.

The compiler decides where to insert synchronization based on
the output of a software-only instrumentation-based tool. In our ex-
periment this tool records all accesses to the memory and matches
all dependent load and store instructions. Pointer analysis [17,
29], especially probabilistic, inter-procedural and context-sensitive
pointer analysis [3, 5, 14] could help us obtain this information with
less detailed profiling information. Data dependence profiling and
compiler insertion of synchronization are described in more detail
in Section 2.3.

1.2 Performance Impact of Failed Speculation

To estimate the performance potential of compiler-inserted syn-
chronization for memory-resident values, we study TLS execution
with optimal memory-resident value communication. Figure 2 shows
the potential impact of reducing failed speculations in the paral-
lelized regions of a program on a four-processor chip multiproces-
sor that supports TLS (detailed in Section 3). Each bar in Figure 2
is broken down into four segments explaining what happens during
all potential graduation slots. The number of graduation slots is the
product of: (i) the issue width (4 in this case), (ii) the number of
cycles, and (iii) the number of processors (4 in this case). The fail
segment represents all slots wasted on failed thread-level specula-
tion, and the remaining three segments represent slots spent on suc-
cessful speculation. The busy segment is the number of slots where
instructions graduate; the sync portion represents slots spent wait-
ing for synchronization for scalar values (scalar values are com-
municated using explicit synchronization); and the other segment
is all other slots where instructions cannot graduate. The U bars
represent the execution time of the benchmark when run in paral-
lel using TLS. Each bar is normalized to the execution time of the
original sequential version, and hence bars less than 100 are speed-
ing up. The best we can possibly do to reduce speculation failure
is to prevent any data dependence speculation from failing. We
measure this ideal behavior by running the same benchmarks with
a hypothetical model that perfectly forwards the values needed by
all load instructions such that no failed speculation nor synchro-
nization stall ever occur due to accesses to the memory (O bars).
We find that for most benchmarks, eliminating failed speculation
results in a substantial performance gain.

1.3 Related Work
Previous work on synchronizing loop-carried data dependences

for DOACROSS loops [2, 4, 9, 20, 30] only focuses on array-based
numeric codes. Our technique applies to arbitrary control flow and
memory access patterns in general-purpose programs, and is able
to (i) forward data for dependences that may or may not occur,
and (ii) ensure correct execution if subsequent stores invalidate the
data that have already been forwarded. Prior to our work, Sura et.
al. [26] used the compiler to insert memory fence instructions to
map the consistency model at the programming language level to
the consistency model offered by the hardware. Correct execution
must be ensured through this mapping, hence, their compiler anal-
yses are conservative. In our case, correctness is ensured by the

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

U O

go
U O

m88ksim
U O

ijpeg
U O

gzip_comp
U O

gzip_decomp
U O

vpr_place
U O

gcc
U O

mcf
U O

crafty
U O

parser
U O

perlb
mk

U O

gap
U O

bzip2_comp
U O

bzip2_decomp
U O

twolf

fail
sync
other
busy

Figure 2: Potential impact of reducing failed speculation. For each benchmark we show execution time on four processors (for
the speculatively parallelized regions of code) normalized to that of the original sequential version. U is unoptimized, without
synchronization of memory resident values; O shows the impact of perfect (oracle) prediction of loads of memory resident values.

underlying hardware and we synchronize frequently occurring data
dependences strictly to improve performance, hence, the compiler
analyses used in this work to insert synchronization can be more
aggressive.

To avoid excessive failed speculation when using TLS, two types
of hardware mechanisms: value prediction [8, 16, 18, 19, 21, 25]
and synchronization [8, 18, 25] have been proposed. Value predic-
tion allows the consumer of a potential data dependence to use a
predicted value, avoiding a dependence violation if the prediction
is correct. Hardware support for automatic synchronization iden-
tifies store-load dependences that frequently cause violations and
attempts to synchronize them dynamically. The various implemen-
tations of these two hardware mechanisms are discussed below.

Dynamic synchronization of memory accesses can benefit both
uniprocessors and multiprocessors. In superscalars, loads are usu-
ally issued as early as possible, but no earlier than prior stores that
write to the same memory address to avoid memory-order viola-
tions. Chrysos and Emer [7] present a design that uses a predic-
tion table for synchronizing dependent store-load pairs in an out-
of-order issue uniprocessor. Moshovos et. al. [18] demonstrate
how to implement a hardware-based synchronization mechanism
in the context of a Multiscalar processor (a thread-speculative chip-
multiprocessor) using centralized lookup tables to match dependent
load/store pairs from different processing units.

A major drawback of previous proposals is the need for central-
ized lookup tables which can limit performance and are difficult to
scale. Two groups [8, 25] propose alternative implementations to
manage synchronization information in a distributed manner. Cin-
tra and Torrellas [8] propose building a distributed hardware lookup
table to keep track of frequently occurring violations. They divide
data dependences into three categories and handle them accord-
ingly. For violations caused by false dependences, they optimisti-
cally allow the consumer to proceed and use the per-word access
bits in its cache hierarchy to check for correctness before com-
mitting. In the case of a true dependence where the value is pre-
dictable, the consumer uses a predicted value and later verifies the
value before committing. In the case of a true dependence with
an unpredictable value, violations are avoided by stalling the con-
sumer until the producer has committed. Their evaluation shows
that these optimizations can substantially improve value communi-
cation for floating point benchmarks.

In prior work we evaluated the use of value prediction to com-
municate predictable values and the use dynamically inserted syn-
chronization to communicate unpredictable values [25]. We found
that value prediction and dynamic synchronization can incur a sig-
nificant cost and should only be applied to those dependences that

limit performance. Loads that frequently cause violations are de-
layed until the producer epoch commits rather than until the desired
value is produced, due to the difficulty in identifying dependent
store-load pairs. Thus, this dynamically inserted synchronization
tends to serialize parallel execution more than necessary.

In another prior work we explored the compiler’s ability to im-
prove scalar value communication, and showed that compilers can
communicate scalar values efficiently between epochs [32]. By tar-
geting scalar values, we have been able to use traditional data-flow
analysis to find all reads/writes to the same data item and identify
the producer and the consumer of a data dependence. We con-
clude that the key to efficiently communicating scalar values be-
tween epochs is to reduce the critical forwarding path created by
synchronization, a task effectively accomplished by the compiler
through instruction scheduling. Although this paper focuses more
on reducing the cost of violations instead of reducing the impact
of the synchronization we insert to avoid violations, we attempt to
evaluate the significance of reducing the cost synchronization for
communicating memory-resident values in Section 4 through ide-
alized experiments.

1.4 Contributions
In the context of thread-level speculation, this paper makes the

following three contributions. First, this is the first attempt to ex-
plore a compiler-based approach to improving the communication
of memory-resident values. We demonstrate the automatic inser-
tion of synchronization and forwarding primitives, and also how
to ensure correct execution when forwarding potentially aliased
values. Second, we show that compiler-inserted synchronization
can reduce the amount of failed speculation caused by frequently-
occurring dependences, and hence improve performance signifi-
cantly for some applications. Finally, we compare and contrast
our approach for compiler-inserted synchronization of memory res-
ident values with a recently proposed hardware technique [25] and
demonstrate that the hardware and compiler can work in tandem.

2.. SYNCHRONIZING MEMORY-RESIDENT
DEPENDENCES

Previous research [32] has shown that compiler-inserted syn-
chronization can effectively communicate scalar values between
epochs and improve program performance by boosting the effi-
ciency of parallel execution. In this paper, we extend this work to
communicate memory-resident values. Synchronizing frequently-
occurring memory-resident values is, however, more complicated
due to the existence of potential aliasing (i.e., a pointer through
which the memory location in question is unexpectedly modified).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

In this section, we first describe how the compiler identifies and
synchronizes register-resident scalar values, then point out the dif-
ferences between communicating register-resident values and memory-
resident values. We also describe how the compiler can explicitly
synchronize accesses to memory-resident values and avoid failed
speculation.

2.1 Synchronizing Register-Resident Values
We can identify scalars that require synchronization using tra-

ditional data flow analysis. Scalar synchronization [32] is applied
to the set of local communicating scalars (i.e. those defined in the
scope of the enclosing procedure), which we define as any scalar
which is live between epochs and does not have its address taken.
Since each communicating scalar is allocated to a register (assum-
ing it is not spilled), we also refer to the values they hold as register-
resident values. For each communicating scalar, the compiler in-
serts wait and signal instructions to synchronize and forward
the value. The wait instruction stalls until a value is produced and
forwarded by the producer epoch through a signal instruction.

The following characteristics of register-resident values make
them easier to synchronize than memory-resident values: (i) there
is no aliasing in accessing scalar values, all accesses (reads or writes)
must explicitly refer to the single register name; and (ii) static in-
structions that access communicating scalars only occur in the loop
body being optimized, not in the procedures called from the loop
body. Thus, it is relatively straightforward to identify all accesses
to these values and to use data-flow techniques to determine the last
definitions and the first exposed uses within an epoch.

2.2 Synchronizing Memory-Resident Values
Unfortunately, the mechanism for forwarding register-resident

scalar values with signal and wait instructions cannot be di-
rectly applied to forwarding memory-resident values for two rea-
sons. First, we are unable to decide whether two memory ac-
cesses refer to the same data item using traditional data-flow anal-
ysis when the same location can be accessed using different names
through pointers. Second, the existence of potential aliasing in ac-
cessing memory-resident values make it difficult and sometimes
even impossible to determine the last definition and the first ex-
posed use of a data item within an epoch. Thus, as opposed to only
synchronizing frequent dependences at definite program points, we
now synchronize probable data dependences for memory-resident
values.

Now we take a close look at how aliasing in memory accesses
makes our problem more difficult. An inter-epoch dependence oc-
curs between a store and a load if: (i) the store occurs in a logically
earlier epoch, (ii) both the store and the load access the same mem-
ory address, and (iii) no other store, between the store and load
in question, modifies this address. Figure 3(a) shows three epochs
executing speculatively in parallel. Assume that load *p could de-
pend on any of the five store instructions while, however, it depends
on store *q most frequently, thus, we want to synchronize and for-
ward a value between this pair. Traditional pointer analysis [3, 5,
29] may help us reduce the set of pointers that p aliases to, but
could not provide the set of frequently dependent instructions that
we need. For instance, must-alias pointer analysis could not iden-
tify likely dependences, such as load *p and store *q, hence would
not synchronize them. On the other hand, may-alias pointer analy-
sis would indicate that load *p may depend on any of the five store
instructions, hence they should all be synchronized. Since neither
provides us with the desired information in this situation, we need
profiling-based tools that identify likely dependences [6, 5]. We
also need mechanisms that allows us to synchronize these likely

T
im

estore *w store *x

store *q

store *y

store *z

load *p

E1

E2

E3

(a) Original program: load *p often depends on store *q.

q

si
gn

al
 a

dd
r

bu
ff

er

E2

to_buffer(q)
signal(*q)
signal(q)
store *q

E3

memory_value = *p

st
al

l

forwarded_value = wait()
check(p, forwarded_addr)

forwarded_addr = wait()

resume()

value = select(memory_value,
 forwarded_value)

(b) Transformation: synchronizing load *p and store *q.

Synchronization operation Description

store *q; The original store operation.
signal(q); Forward the address q to the next epoch.
signal(*q); Forward the value stored as well.
to buffer(q); Save the address q in the signal address buffer.

forwarded addr = wait(); Wait for the address to arrive from the previous
epoch.

check(p, forwarded addr); If p equals forwarded addr set the
use forwarded value flag. Loads issued while
this flag is set will not cause violations.

forwarded value = wait(); Wait for the value to arrive from the previous epoch.
memory value = *p; Load a value from the memory system using the

load operation. If the address p has been previ-
ously modified by the current epoch, this instruc-
tion clears the use forwarded value flag. If the
use forwarded value flag is set when this load is is-
sued, this instruction only accesses the speculative
cache and will not cause a violation.

value = select If use forwarded value flag is set, select
(memory value, forwarded value, otherwise, select memory value.
forwarded value); The selected value is placed in value.
resume(); Reset the use forwarded value flag.

(c) Description of operations inserted for synchronization.

Figure 3: Program transformation to synchronize frequently
occurring memory-resident dependences between epochs.

data dependences, and to ensure correct execution for whatever de-
pendences actually occur at runtime.

In the rest of this section we describe the hardware mechanism
for synchronizing memory-resident values while preserving correct
execution, using Figure 3(b) as our guide.

The producer of the forwarded value still has to store the value
to memory, since it may still be read from memory by other parts
of the program. The producer also has to communicate the for-
warded value and its address, through the signal instructions. In ad-
dition, the producer has to be able to detect if the wrong value was
forwarded—this is done by storing the address in the signal ad-
dress buffer, a small per-cpu buffer which is used to make sure that
no later store in the epoch writes to the same memory location.

The consumer of the forwarded value first has to wait for the
value and its address to arrive, through the wait instructions. The
consumer then checks to see if the addresses match (to make sure

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

a useful value was received), and if so sets a cpu-local flag called
use forwarded value. The consumer then issues a load to the spec-
ulative cache. If the use forwarded value flag is set when this load
is issued, this instruction only accesses the speculative cache and
will not cause a violation. This load also checks to see if the value
has been overwritten locally and clears the use forwarded value
flag if it is. The value of the use forwarded value flag then deter-
mines whether the forwarded value or the value loaded from mem-
ory is used in subsequent computation, and when we are finished
the use forwarded value flag is reset.

We now describe how correctness is ensured by describing all
possible data dependences that may occur. When a true data de-
pendence occurs between store *q and load *p, the forwarding
mechanism forwards the correct address and value, then the for-
warded value is used. If load *p depends on store *w or store *x,
the forwarded address q cannot point to the same location as p.
Thus, the use forwarded value flag is not set, the select instruc-
tion will choose memory value, and the underlying hardware that
supports TLS will ensure correct execution. If p, q and y all point
to the same memory location, the forwarding instruction will for-
ward the correct address, but a wrong value. The producer epoch
will notice that it is storing to an address that is already in the sig-
nal address buffer, and send a signal which restarts the consumer
epoch. If load *p depends on store *z, use forwarded value flag
is reset by the load instruction and we will use the value loaded
from the memory. This is correct, since this memory access is not
exposed and the local cache holds the correct value.

It is possible that on some paths through an epoch the value is
never produced. In this case, the producer epoch should still signal
the consumer epoch by sending a NULL value in the address field,
so that the consumer does not wait indefinitely. If p points to a
valid address then it will not match this NULL pointer, and the load
in the consumer epoch will be read from memory. If p happens to
be a NULL pointer as well then the program will dereference this
NULL pointer just like the original untransformed program did, and
cause an exception (depending on the policy of the host operating
system).

The size of the signal address buffer is equal to the number of
forwarded values. In practice, the number of values requiring for-
warding is small. Our experiments show that we never need a buffer
larger than 10-entries.

2.3 Compiler Support
In our approach to TLS support, the compiler is able to both

detect and synchronize frequently-occurring data dependences. In
this section we demonstrate how the compiler inserts synchroniza-
tion using the example shown in Figure 4. In this example we paral-
lelize a loop that calls the procedures free element() and use element()
to add and remove members of a linked list called free list. In every
iteration of the loop, the global variable free list is read and modi-
fied, potentially causing frequent data dependences and failed spec-
ulation unless prevented by proper synchronization. Note that this
example is complicated by the fact that the variable free list can be
accessed using other names (i.e., aliases). Our compiler performs
the following steps to synchronize the accesses to this variable:

Profiling dependences: The compiler identifies frequently-occurring,
memory-resident, data dependences by profiling all inter-epoch data
dependences for each parallelized loop (this profile information is
context-sensitive but flow-insensitive). To acquire the profile infor-
mation, we first associate a unique identifier with each static load
and store instruction, and each procedure call point. During execu-
tion each load and store instruction can be named by the combina-

tion of the instruction identifier and the current call stack (the call
stack for an instruction, rooted at the parallelized loop, is the list of
procedures calls invoked when that instruction is executed). During
profiling, each load is matched with any store on which it depends,
and the frequency of each dependence is recorded. In Figure 4(a),
ld 1, ld 3, st 2 and st 4 all access the same memory location de-
noted by free list, and their dependence relation is illustrated in
Figure 5. Note that a two memory references with the same identi-
fication number but different call stacks are treated separately (i.e.,
represented by two different vertices in the graph).

Identifying frequently occurring dependences: Unlike scalar val-
ues, the same memory-resident value can be accessed with multiple
names (through pointer aliasing)—hence we group together loads
and stores that access the same memory location. It is important to
understand that a group is different from an alias set. An alias set
of pointers is defined conservatively to be a set of pointers that may
point to the same memory locations. In contrast, (i) pointers in a
group will definitely access the same memory locations frequently,
and (ii) pointers that access the same location might not be grouped
if the corresponding data dependences are infrequent.

The compiler chooses groups of pointers by using the depen-
dence profiling information described above to construct a depen-
dence graph, where each load or store instruction with a different
call stack is represented by a vertex, and each frequently-occurring
dependence is represented by an edge. In the resulting graph, each
connected component represents a group, and all loads and stores
belonging to the same group are then synchronized by the compiler
as a single entity. Note that we ignore infrequent dependences for
performance reasons: if we were to additionally include infrequent
data dependences in the graph then our groups would be much
larger (as shown in Figure 5), leading to over-synchronization and
poor performance.

Cloning: For best performance, we want synchronization code to
be executed only when necessary to avoid data dependence viola-
tions. For example, when a load with a particular call stack is cho-
sen for synchronization, ideally the corresponding synchronization
code would only be executed when the load has been reached on a
path matching that call stack—the synchronization code should not
be executed when the load is reached through some other call path.

Our compiler uses the following steps to implement this code
specialization, which basically clones the appropriate procedures
on the call stack of a synchronized memory reference. First we
build a call tree with the parallelized loop as the root and each call
instruction as a decedent of this loop, as shown in Figure 4(a). Sec-
ond, we identify the location in the tree of all frequently-occurring
data dependences: for any node containing frequently-occurring
dependences, that node and its parents are all cloned, and the orig-
inal call instructions are modified to refer to these cloned proce-
dures. In our example, the synchronized load and store occurs on
the call stack call 3, hence the procedure free element is cloned
as shown in Figure 4(b). Code expansion due to such cloning is
negligible (less than 1% on average), since only a small number of
procedures are cloned in each application.

Inserting synchronization: Wait instructions are inserted before
each load instruction to be synchronized, as shown in Figure 3(b).
However, Signal instructions cannot be inserted after every store
instruction, since multiple store instructions belonging to the same
group could occur on a single execution path through an epoch.
A signal instruction must occur at least once for each group on
every execution path through the epoch, and should occur after the
last store instruction from that group has been issued. We perform

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

void free element(element) �
element->next = free list; st 1, ld 1
free list = element; st 2, ld 2

�
int use element() �

element = free list; st 3, ld 3
free list = element->next; st 4, ld 4
return element;

�
void work() �

if(condition()) call 1
use element(some element); call 2

�
main() �

do �
free element(some element); call 3
work(); call 4

� while (test);
�

free_element()
work()

condition()

loop

use_element()

(a) The original program and the corresponding call tree. Function calls, loads and stores are instrumented with labels to
identify them.

void free element cloned(element) �
f addr = wait();
check(f addr, &free list);
f value = wait();
m value = free list;
actual value = select(f value, m value);
resume();
element->next = actual value;
free list = element;
signal(&free list);
signal(free list);

�
...free element(), use element() and work()
functions omitted for brevity...
main() �

do parallel �
free element clone(some element);
work();

� while (test);
�

free_element_cloned()

use_element()

work()

condition()

loop

(b) The cloned call tree and the program with synchronization inserted.

Figure 4: Compiler-directed procedural cloning and synchronization insertion.

(call_4, call_2)
ld_4ld_1

(call_3) (call_3)
ld_2

(call_4, call_2)
ld_3

(call_4, call_2)
st_4

(call_4, call_2)
st_3

(call_3)
st_2

(call_3)
st_1

Infrequently
occurring
dependence

Frequently
occurring
dependence

Figure 5: An example dependence graph. Each vertex repre-
sents a load or store, identified by the combination of a unique
number and call stack. Each edge shows a true data depen-
dence between memory references. Ignoring infrequent data
dependences, a group is formed with two vertices: ld 1 and st 2
(both having call stack (call 3)). Accounting for infrequent data
dependences would result in an overly-large group.

data-flow analyses to find locations that satisfy such constraints to
insert the signal operations, similar to the data-flow analyses used
to synchronize scalar values [32]. The results of these data-flow
analyses are propagated to the cloned procedures to allow signal
instructions to be inserted as close as possible to where the value is
produced.

2.4 Analysis of Data Dependence Patterns
The synchronization mechanism proposed in this section attempts

to reduce failed speculation by targeting only frequently-occurring
data dependences between consecutive epochs. We now demon-
strate that the overall performance penalty due to failed speculation
can be mostly attributed to such dependences, and that our decision
to ignore infrequent dependences is justified. We performed a limit
study using a model with perfect value prediction for loads of inter-
est, which represents an upper bound on the possible performance
of synchronizing those loads.

Although it is clear that a frequently-dependent load/store pair
should be synchronized, we have yet to experimentally determine
a threshold frequency at which synchronization is more beneficial
than speculation. To answer this question we conducted the ex-
periment shown in Figure 6. First, we identified load instructions
that cause inter-epoch data dependences in more than 5%, 15% and
25% of all epochs. Then, we measure the impact of perfect pre-
diction for each set of loads. Although perfect prediction of loads
with highly-frequent dependences (eg., 25%) eliminates a signifi-
cant amount of failed speculation, GZIP COMP and BZIP2 COMP

do not speed up with respect to sequential execution until we addi-
tionally predict loads with less-frequently occurring dependences.
Only when all loads that cause inter-epoch data dependences in
more than 5% of all epochs are perfectly predicted are we able to
improve the performance of all benchmarks, suggesting a reason-
ably low threshold value of 5%.

The distance of a data dependence, in the context of TLS, is the
number of epochs between the producer epoch and the consumer

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

U 25 15 05

go

U 25 15 05

m88ksim
U 25 15 05

ijpeg

U 25 15 05

gzip_comp

U 25 15 05

gzip_decomp

U 25 15 05

vpr_place

U 25 15 05

gcc

U 25 15 05

mcf

U 25 15 05

crafty

U 25 15 05

parser

U 25 15 05

perlb
mk

U 25 15 05

gap

U 25 15 05

bzip2_comp

U 25 15 05

bzip2_decomp

U 25 15 05

twolf

fail
sync
other
busy

Figure 6: Impact of perfectly forwarding value for loads that depend on a store in the previous epoch (dependence distance one),
broken down by frequency of the dependence: U is the unoptimized case with no forwarding; 25 shows the impact of perfectly
forwarding all loads that depend on the previous epoch in more than 25% of all epochs; 15 shows the impact of perfectly forwarding
all loads that depend on the previous epoch in more than 15% of all epochs; 05 shows the impact of perfectly forwarding all loads
that depend on the previous epoch in more than 5% of all epochs.

epoch. For example, a data dependence between two consecutive
epochs has distance of one. To determine the amount of failed spec-
ulation caused by dependences of different distances, we carry out
an idealized simulation assuming that we can perfectly predict val-
ues for loads with dependences of varying distances, as shown in
Figure 7. We observe that the performance impact for distance-one
loads is significant; however, the impact of loads with larger de-
pendence distances is small, and only relevant for one benchmark.
Hence dependences of distance one should be the focus of any syn-
chronization effort.

3. INFRASTRUCTURE FOR TLS
In this section we describe our compiler infrastructure and the

underlying hardware support for TLS, as well as our simulation
infrastructure and experimental framework.

3.1 Compiler Infrastructure
We rely on the compiler to define where and how to parallelize.

Our compiler infrastructure is based on the Stanford SUIF 1.3 com-
piler system [27], and performs the following phases when trans-
forming an application to exploit TLS.

Deciding Where to Parallelize: A speculative region is a portion
of a program that we speculatively parallelize. In this paper, we
focus solely on loops. With the profile information automatically
gathered, the compiler starts with a set of loops chosen to maxi-
mize coverage while meeting heuristics for epoch size and loop trip
counts: each loop must comprise at least 0.1% of overall execution
time and have an average of at least 1.5 epochs per instance, as well
as an average of at least 15 instructions per epoch. Loops satisfy-
ing these conditions are considered for parallelization. We want
to identify the set of loops that are likely to minimize total execu-
tion time, given that the techniques described in this paper can im-
prove the performance of value communication through memory.
We do so by obtaining an optimistic upper bound on performance
by identifying all loads that cause inter-epoch data dependences in
more than 5% of all epochs and assume that we can perfectly pre-
dict values for these loads during execution. The set of loops that
minimize the total execution time of the entire program under this
ideal condition are selected for this study. Once loops are selected,
the compiler automatically applies loop unrolling to small loops to
help amortize the overheads of speculative parallelization. Note
that the profiling described above is required only to select which
loops are to be parallelized (and not to decide how to forward val-

ues). Deciding which regions of code to speculatively parallelize
using a minimum amount of profiling information is the subject of
ongoing research.

Transforming to Exploit TLS: Once speculative regions are cho-
sen, the compiler inserts new TLS-specific instructions into the
code that interact with the TLS hardware to create and manage
epochs [23]. For each speculatively parallelized region the com-
piler inserts explicit synchronization to communicate scalar values
between epochs. To avoid parallel epochs being serialized unneces-
sarily by such synchronization, the compiler schedules instructions
within the epoch to reduce the critical forwarding path [32].

Inserting Synchronization for Memory-Resident Values: The
final optimization step is for the compiler to identify frequently-
occurring inter-epoch data dependences through memory resident
values and to insert explicit synchronization (the subject of this pa-
per). In our implementation, we identify these dependences with
the help of detailed profile information. The details of this data de-
pendence profiling, as well as the synchronization mechanisms and
corresponding compiler support are discussed in section 2.3.

Code Generation: Our compiler outputs C source code which en-
codes our new TLS instructions as in-line MIPS assembly code
using gcc’s “asm” statements. This source code is then compiled
with gcc 2.95.2 using the “-O3” flag to produce optimized, fully-
functional MIPS binaries containing these new TLS instructions.

3.2 Underlying Hardware Support
The hardware which supports TLS must implement two impor-

tant features: buffering speculative modifications from regular mem-
ory, and detecting and recovering from failed speculation. Our
underlying hardware support is based on the scheme proposed in
our previous work [23, 24] which extends invalidation-based cache
coherence to track data dependences and uses the first-level data
caches to buffer speculative state from the rest of the memory sys-
tem.

3.3 Experimental Framework
We evaluate our compilation techniques using a detailed machine

model which simulates 4-way issue, out-of-order, superscalar pro-
cessors similar to the MIPS R14000 [31], but modernized to have
a 128-entry reorder buffer. We simulate a system with four pro-
cessing cores, where each has its own physically private data and
instruction caches, connected to a unified second level cache by a
crossbar switch. Register renaming, the reorder buffer, branch pre-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

U1 2 3

go
U1 2 3

m88ksim
U1 2 3

ijpeg
U1 2 3

gzip_comp
U1 2 3

gzip_decomp
U1 2 3

vpr_place
U1 2 3

gcc
U1 2 3

mcf
U1 2 3

crafty
U1 2 3

parser
U1 2 3

perlb
mk

U1 2 3

gap
U1 2 3

bzip2_comp
U1 2 3

bzip2_decomp
U1 2 3

twolf

fail
sync
other
busy

Figure 7: Impact of forwarding values for frequently occurring data dependences (�� of the time), broken down by dependence
distance: U is the unoptimized case with forwarding; 1 shows the impact of perfectly forwarding values for all loads causing depen-
dences of distance one; 2 builds on 1 by forwarding values for loads causing dependences of distance two; 3 builds on 2 by forwarding
values for loads causing dependences of distance three.

Table 1: Simulation parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

diction, instruction fetching, branching penalties, and the memory
hierarchy (including bandwidth and contention) are all modeled,
and are parameterized as shown in Table 1. We report results for
all of the SPECint95 and SPECint2000 benchmarks [22] except
for the following: 252.EON, which is written in C++ and there-
fore not handled by SUIF; 126.GCC, which is similar to 176.GCC;
147.VORTEX, which is identical to 255.VORTEX; 129.COMPRESS,
130.LI, 134.PERL and 255.VORTEX each have low parallel cover-
age, and hence are not included in the performance graphs. For
each benchmark, after skipping over the initialization phases, we
simulate approximately a billion instructions using the first input in
the ref input set.

4.. PERFORMANCE EVALUATION
We now present the results of our experiments to quantify the

performance impact of our compiler-based technique, and we also
compare it with related hardware-based techniques [8, 25].

4.1 Impact of Compiler-Inserted Synchroniza-
tion

Figure 8 shows the performance impact of our compiler algo-
rithm (described earlier in Section 2) for synchronizing frequently-
occurring memory-resident data dependences. This figure shows
the time spent in parallelized regions of the code (we will focus

on overall program speedups later in Section 4.3), normalized to
the time spent in those regions in the original sequential program.
(Hence if a bar is less than 100, it means that the parallelized re-
gions would be speeding up under TLS.) The U bars are the base-
line (“unsynchronized”) case that we are attempting to improve
upon: they contain no synchronization for memory-resident values
(but may contain synchronization for scalar register values [32]).
The T and C bars show the impact of compiler-inserted synchro-
nization for memory-resident values on region performance with
the ref input sets, where profiling was done with the train (T)
and ref (C) input sets, respectively.

Comparing C with U that compiler-inserted synchronization im-
proves performance in half of the benchmarks (GO,GZIP COMP,
GZIP DECOMP, VPR PLACE, GCC, PARSER, PERLBMK, and GAP),
and has no significant impact in the other seven cases. (Note that
in two of the seven cases where our technique did not improve
performance—BZIP2 DECOMP and TWOLF—failed speculation was
not a problem to begin with.) Among the seven cases that do im-
prove, the amount of execution time wasted on failed speculation
(“fail”) is reduced by an average of 68%. Although some of this
gain is offset by an increase in time stalled waiting for synchroniza-
tion (“sync”), these seven applications still enjoy an average region
speedup of 17%.

By comparing the T and C bars in Figure 8, we can get a sense
of how the accuracy of the profiling information used by our com-
piler can affect the quality of its results. The T bars represent the
more realistic scenario where profiling is done with a different in-
put set (train) than the one used in the actual run (ref), and the
more optimistic scenario for the C bars (where the profiling and ac-
tual input sets are the same) is included for the sake of comparison.
Note that in all but one case (GZIP COMP), the results are fairly in-
sensitive to the choice of profiling input set. In GZIP COMP, how-
ever, the flow of control is complex and sensitive to the input set,
and this in turn determines which loads and stores are dependent;
hence different profiling input sets can lead the compiler to syn-
chronizing different pairs of loads and stores. Because the T and
C cases behave differently for GZIP COMP, we will present both
cases throughout the remainder of this paper as “GZIP COMP T”
(T) and “GZIP COMP” (C).

By synchronizing data dependences, we trade time spent on failed
speculation with that on synchronization. When synchronization is
not properly placed, it could create a critical forwarding path which
dominates execution time. Although reducing the cost of synchro-
nization is not the goal of this paper, we attempt to evaluate the sig-
nificance of synchronization with two experiments: in Figure 9, the

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

U T C

go
U T C

m88ksim
U T C

ijpeg
U T C

gzip_comp
U T C

gzip_decomp
U T C

vpr_place
U T C

gcc
U T C

mcf
U T C

crafty
U T C

parser
U T C

perlb
mk

U T C

gap
U T C

bzip2_comp
U T C

bzip2_decomp
U T C

twolf

fail
sync
other
busy

Figure 8: Impact of compiler-inserted synchronization using different profiling information. U has no synchronization; T profiles
with the train input set and measures with the ref input set; C profiles with the ref input set and measures with the ref input set.

E bars correspond to an idealized experiment where the consumer
is always able to perfectly predict any synchronized memory value.
This eliminates all time spent on synchronization of memory val-
ues, but may increase violations since it increases parallel overlap.
The L bars in Figure 9 correspond to a more conservative forward-
ing scheme where synchronized loads issued by the consumer are
stalled until the previous epoch completes.

For M88KSIM, IJPEG, GZIP COMP, GZIP DECOMP and VPR PLACE,
execution time is positively correlated with the cost of synchro-
nization. This indicates that stalling frequently violated loads until
previous thread completes could serialize the execution unneces-
sarily and degrades performance. On the other hand, being able
to forward the value early can reduce synchronization and improve
performance.

4.2 Comparison with Hardware-Inserted Syn-
chronization

Previous research [8, 25] proposed two hardware techniques to
reduce the cost of failed speculation due to memory-resident val-
ues: prediction and synchronization. Neither of the proposed tech-
niques require centralized structures to match dependence pairs;
however, the they differ in complexity, from a 2KB violation pre-
diction table [8] to two 32-entry tables that track loads which are
exposed and loads which have caused speculation to fail [25]. We
have implemented hardware-based prediction and synchronization
as described et. al [25]. In Figure 10, we compare our compiler-
inserted synchronization techniques with these two hardware mech-
anisms. The P bar shows that the value prediction technique that
we have evaluated has insignificant effect on performance, indicat-
ing that forwarded memory-resident values are unpredictable. In
the rest of this section, we focus on comparing hardware-inserted
synchronization (H) with compiler-inserted synchronization (C).
For the hardware inserted synchronization, the hardware identifies
loads that frequently cause violations and stalls these loads until
the previous epoch completes. To avoid over-synchronization of
infrequently-dependent loads, we periodically reset the table that
tracks the loads that have caused speculation to fail.

A comparison between compiler-inserted and hardware-inserted
synchronization reveals that each of the techniques wins in some
cases but none of them wins for them all. In eleven out of the fif-
teen benchmarks, at least one synchronization technique is able to
improve the performance over the unoptimized case. Four bench-
marks, GO, GZIP DECOMP, PERLBMK and GAP, achieve the best
performance with compiler-inserted synchronization; three bench-
marks, M88KSIM, GZIP COMP, VPR PLACE, achieve the best per-
formance with hardware-inserted synchronization. For the rest of
the benchmarks, the two techniques are comparable. Here we at-

tempt to explain why each benchmark responds differently to the
two optimization techniques:

� In M88KSIM, violations are not caused by true data depen-
dences, rather they are caused by false sharing. The com-
piler is attempting to synchronize true dependences, while
the hardware is tracking dependences at a cache line gran-
ularity. Since violations are tracked at a cache line granu-
larity, the hardware inserted synchronization yields the best
results—we could track dependences at a cache line granu-
larity in the compiler as well, but we believe that other tech-
niques (such as memory layout optimizations or loop un-
rolling) are better for addressing false sharing in the com-
piler.

� In GZIP DECOMPRESS, the compiler and the hardware both
insert synchronization, however, the compiler is able to spec-
ulatively forward the desired value much earlier than our
hardware can. This avoids over-synchronization, resulting
in better performance.

� Software-inserted synchronization can be conservative—it syn-
chronizes dependences which may or may not actually hap-
pen at runtime, depending on the timing of the epochs. If a
load tends to be executed only when all prior epochs have
completed, then it will rarely cause a violation. In such a
case, the synchronization code just adds extra overhead—
this is the cause of the small performance degradation in
TWOLF.

Since the hardware and the compiler based synchronization can
each benefit a different set of benchmarks, we conduct the follow-
ing experiment to determine whether the two techniques are syn-
chronizing the same set of memory-resident values: we invoke our
synchronization scheme to mark each load instruction as would be
synchronized by the compiler and/or by the hardware (depending
on the execution mode, we may or may not stall for marked syn-
chronization). When a violation does occur, we record whether the
load that caused this violation would have been synchronized, and
by which scheme. We execute the program under four different
modes, and show the results in Figure 11: (i) do not stall for any
synchronization, denoted by the U bars; (ii) only stall for compile-
inserted synchronization, denoted by the C bars; (iii) only stall for
hardware-inserted synchronization, denoted by the H bars; (iv) stall
for both hardware-inserted and compiler-inserted synchronization,
denoted by the B bars. We observe that a significant number of vi-
olating loads would only be synchronized by either the hardware
or the compiler, but not both. Our existing compiler and hard-
ware support can be complementary as follows: (i) the hardware

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

E C L

go
E C L

m88ksim
E C L

ijpeg
E C L

gzip_comp
E C L

gzip_comp_T
E C L

gzip_decomp
E C L

vpr_place
E C L

gcc
E C L

mcf
E C L

crafty
E C L

parser
E C L

perlb
mk

E C L

gap
E C L

bzip2_comp
E C L

bzip2_decomp
E C L

twolf

fail
sync
other
busy

Figure 9: Potential impact of changing to a more aggressive or less aggressive synchronization scheme. E is the idealized case where
the consumer can perfectly predict synchronized memory values; in C the consumer stalls any load of a synchronized memory
value until the producer forwards the value; in L the consumer stalls any load of a synchronized memory value until the producer
completes.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

UCPHB

go
UCPHB

m88ksim
UCPHB

ijpeg
UCPHB

gzip_comp
UCPHB

gzip_comp_T
UCPHB

gzip_decomp
UCPHB

vpr_place
UCPHB

gcc
UCPHB

mcf
UCPHB

crafty
UCPHB

parser
UCPHB

perlb
mk

UCPHB

gap
UCPHB

bzip2_comp
UCPHB

bzip2_decomp
UCPHB

twolf

fail
sync
other
busy

Figure 10: Comparison of compiler-inserted synchronization, hardware-inserted synchronization, and a hybrid scheme. U has no
synchronization; C uses compiler-inserted synchronization; P uses hardware value prediction; H uses hardware-inserted synchro-
nization with the violating load table periodically reset; B uses a hybrid of compiler-inserted and hardware-inserted synchronization
with the violating load table periodically reset.

synchronizes violating loads that are not identified by profiling in-
formation; (ii) the compiler reduces the cost of synchronization by
providing the forwarded value early. Two possible ways to further
enhance complementary behavior are (iii) for the hardware to filter
out compiler-inserted synchronization that rarely forward the cor-
rect values; and (iv) for the hardware to reset a violating load less
frequently if the compiler hints that it will occur frequently.

To illustrate the feasibility of such a compiler-hardware hybrid,
we enable both hardware synchronization with periodic reset and
compiler-inserted synchronization. The results are shown in Fig-
ure 10 as bar B. In several benchmarks, the hybrid approach nearly
captures the performance of the best of the two techniques: M88KSIM

benefits from hardware-inserted synchronization and avoids the cost
of false sharing, while GZIP DECOMP benefits from having values
be forwarded early by compiler-inserted synchronization. There-
fore, it is possible for us to implement a hybrid that can improve
the performance of a larger set of programs by taking advantage of
both compiler and hardware inserted synchronization.

4.3 Program Performance
Since we are interested in studying the impact of synchronization

on parallelized code, we so far have focused on region speedups. In
Figure 12 we instead take the coverage of these loops into account
and look at the performance impact on the whole program. We see
that inserting synchronization of memory values has a significant
positive impact for six of these benchmarks, and that the best re-
sults overall can be achieved with a hybrid of both software and

hardware synchronization. Table 2 presents the speedups in detail,
and we see that relatively large speedups in our parallel regions are
sometimes offset by slowdowns in our sequential code. (Ideally,
we should see a speedup of 1.0 in the sequential regions.) This
is a side effect of our compiler infrastructure—the inline assem-
bly we use to instrument parallelized loops can inhibit the opti-
mization and register allocation of our gcc back-end, causing this
measurement artifact. This overhead remains constant regardless
of the hardware and/or compiler optimizations applied. We an-
ticipate that with a proper compiler back-end (instead of using a
source-to-source compiler followed by gcc) even better program
performance would be observed.

5. CONCLUSIONS
TLS provides a mechanism for speculating that data dependences

across optimistically-parallelized threads do not exist. Like most
forms of speculation, however, when you speculate correctly you
win, but when you speculate incorrectly, you can actually hurt per-
formance. Hence an important question is how frequently do inter-
thread data dependences occur? If they occur frequently enough for
a given load-store pair, we may be better off explicitly synchroniz-
ing the threads so that the consumer waits for the value (or at least a
good guess of what the value might be) from the producer. In previ-
ous work, we demonstrated that compiler-inserted synchronization
for scalar register values was an important technique for improving
TLS performance [32], and in this paper we tackled the question of
whether the same is also true for memory-resident values.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

|0

|20

|40

|60

|80

|100

 U
n

sy
n

ch
ro

n
iz

ed
 V

io
la

ti
n

g
 L

o
ad

s

UCHB

go
UCHB

m88ksim
UCHB

ijpeg
UCHB

gzip_comp
UCHB

gzip_comp_T
UCHB

gzip_decom
UCHB

vpr_place
UCHB

gcc
UCHB

mcf
UCHB

crafty
UCHB

parser
UCHB

perlb
mk

UCHB

gap
UCHB

bzip2_comp
UCHB

twolf

None
Compile
Hardwa
Both

Figure 11: Breakdown of all loads that cause violations by whether they would be synchronized by hardware or compiler-inserted
synchronization. U stalls on no synchronization; C stalls only on compiler-inserted synchronization; H stalls only on hardware-
inserted synchronization; B stalls on both compiler-inserted and hardware-inserted synchronization. BZIP2 DECOMP is omitted
because it has no violations.

|0

|50

|100

|150

N
o

rm
al

iz
ed

 P
ro

g
ra

m
 E

xe
cu

ti
o

n
 T

im
e

UCHB

go
UCHB

m88ksim
UCHB

ijpeg
UCHB

gzip_comp
UCHB

gzip_comp_T
UCHB

gzip_decomp
UCHB

vpr_place
UCHB

gcc
UCHB

mcf
UCHB

crafty
UCHB

parser
UCHB

perlb
mk

UCHB

gap
UCHB

bzip2_comp
UCHB

bzip2_decomp
UCHB

twolf

fail
sync
other
busy

Figure 12: Program speedup. U is the case with no synchronization; C is compiler-inserted synchronization; H is hardware-inserted
synchronization with the violating load table periodically reset; B is a hybrid of compiler-inserted and hardware-inserted synchro-
nization.

We observe that for most benchmarks failed speculation is usu-
ally caused by load instructions that suffer dependence violations
relatively frequently (e.g., at least 25% of the time), which makes
them easy to spot given a mechanism for profiling data depen-
dences. However, for some benchmarks we must be able to syn-
chronize data dependences that only occur in 5% of the epochs to
achieve a reasonable speedup. In addition, we also observe that
the producer and consumer of inter-thread dependences are usually
consecutive epochs, which simplifies the process of explicitly for-
warding the data.

Our performance results demonstrate that applying compiler-inserted
synchronization to memory-resident values that would otherwise
cause frequent dependence violations does improve TLS perfor-
mance in many cases: half of the applications enjoyed significant
region speedups, while the other half were unaffected. The most
dramatic case was GZIP DECOMP, which went from a significant
region slowdown to a significant region speedup using our tech-
nique. For GZIP DECOMP and several other cases, we observe a
significant benefit from the compiler’s ability to forward data when
it is produced (rather than waiting until the producer thread com-
pletes its execution).

Comparing our compiler-based approach with a hardware-based
approach to synchronizing memory-resident values, we observe that
both approaches are useful, and that neither approach consistently
dominates the other: sometimes the compiler-based approach is
much better than the hardware-based approach, and vice-versa. We
observe that the two different approaches seem to behave differ-
ently because they often choose different sets of load instructions
to synchronize. This suggests that a hybrid approach that combines

the advantages of both approaches might be best. While the simple
hybrid approach that we explored did not outperform the best of the
two approaches for a given benchmark, it did a better job of track-
ing the best performance overall than either approach individually.
In future work, it may be possible to design an even better hybrid
approach.

6. REFERENCES
[1] AKKARY, H., AND DRISCOLL, M. A Dynamic

Multithreading Processor. In MICRO-31 (December 1998).
[2] BANERJEE, U. Dependence Analysis for Supercomputing.

Kluwer Academic Publishers, Norwell, Mass., 1988.
[3] BHOWMIK, A., AND FRANKLIN, M. A fast approximate

interprocedural analysis for speculative multithreading
compiler. In 17th Annual ACM International Conference on
Supercomputing (2003).

[4] CHEN, D. K., AND YEW, P. C. Redundant synchronization
elimination for doacross loops. IEEE Transactions on
Parallel and Distributed System 10, 5 (1999), 459–470.

[5] CHEN, P.-S., HUNG, M.-Y., HWANG, Y.-S., JU, R., AND
LEE, J. K. Compiler support for speculative multithreading
architecture with probabilistic points-to analysis. In ACM
SIGPLAN 2003 Symposium on Principles and Practice of
Parallel Programming (2003).

[6] CHEN, T., LIN, J., DAI, X., HSU, W.-C., AND P.-C.YEW.
Data dependence profiling for speculative optimization. In
13th International Conference on Compiler Construction
(Barcelona, Spain, March 2004).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Table 2: Region coverage and program speedup (relative to sequential execution).
Parallel Sequential Program

Benchmark Coverage Region Speedup Region Speedup Speedup
Compiler-only Both Compiler-only Both Compiler-only Both

099.go 22% 1.29 1.27 0.90 0.90 0.97 0.97
124.m88ksim 56% 1.33 2.15 0.82 0.82 1.04 1.25
132.ijpeg 97% 1.73 1.73 0.52 0.52 1.64 1.64
164.gzip comp 25% 0.69 0.72 0.98 0.98 0.88 0.90
164.gzip comp T 25% 0.52 0.75 0.98 0.98 0.80 0.91
164.gzip decomp 99% 1.16 1.16 0.93 0.93 1.16 1.16
175.vpr place 99% 1.00 1.00 0.97 0.97 1.00 1.00
176.gcc 18% 1.18 1.18 0.94 0.94 0.98 0.98
181.mcf 89% 1.25 1.21 0.99 0.99 1.21 1.18
186.crafty 14% 1.16 1.13 0.92 0.92 0.95 0.95
197.parser 37% 2.13 2.14 0.74 0.74 0.98 0.98
253.perlbmk 20% 1.20 1.12 1.00 0.98 1.04 1.01
254.gap 57% 0.92 0.92 0.82 0.82 0.87 0.88
256.bzip2 comp 63% 0.94 0.96 0.96 0.96 0.95 0.96
256.bzip2 decomp 13% 1.66 1.66 0.99 0.99 1.05 1.05
300.twolf 19% 1.34 1.34 0.84 0.83 0.90 0.90

[7] CHRYSOS, G., AND EMER, J. Memory dependence
prediction using store sets. In Proceedings of the 25th ISCA
(June 1998).

[8] CINTRA, M., AND TORRELLAS, J. Eliminating squashes
through learning cross-thread violations in speculative
parallelization for multiprocessors. In Proceedings of the 8th
HPCA (Feb 2002).

[9] CYTRON, R. Doarcoss: Beyond vectorization for
multiprocessors. In Int’l. Conf. on Parallel Processing (Aug.
1986).

[10] GOPAL, S., VIJAYKUMAR, T., SMITH, J., AND SOHI, G.
Speculative Versioning Cache. In Proceedings of the 4th
HPCA (February 1998).

[11] GOPAL, S., VIJAYKUMAR, T. N., SMITH, J. E., AND
SOHI, G. S. Speculative Versioning Cache. Tech. Rep. 1334,
Computer Sciences Department, University of
Wisconsin-Madison, July 1997.

[12] GUPTA, M., AND NIM, R. Techniques for Speculative
Run-Time Parallelization of Loops. In Supercomputing ’98
(November 1998).

[13] HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. Data
Speculation Support for a Chip Multiprocessor. In
Proceedings of ASPLOS-VIII (October 1998).

[14] LIVSHITS, V. B., AND LAM, M. S. Tracking pointers with
path and context sensitivity for bug detection in c programs.
In 11th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-11) (September
2003).

[15] MARCUELLO, P., AND GONZALES, A. Clustered
Speculative Multithreaded Processors. In Proc. of the ACM
Int. Conf. on Supercomputing (June 1999).

[16] MARCUELLO, P., TUBELLA, J., AND GONZALEZ, A. Value
prediction for speculative multithreaded architectures. In
Proceedings of Micro-32 (Haifa, Israel, Nov. 1999).

[17] MOCK, M., DAS, M., CHAMBERS, C., AND EGGERS, S. J.
Dynamic points-to sets: A comparison with static analyses
and potential applications in program understanding and
optimization. In SIGSOFT workshop on on Program analysis
for software tools and engineering Snowbird (June 2001).

[18] MOSHOVOS, A. I., BREACH, S. E., VIJAYKUMAR, T.,
AND SOHI, G. S. Dynamic speculation and synchronization
of data dependences. In Proceedings of the 24th ISCA (June
1997).

[19] OPLINGER, J., HEINE, D., AND LAM, M. S. In Search of
Speculative Thread-Level Parallelism. In Proceedings of
PACT ’99 (October 1999).

[20] RAUCHWERGER, L., AND PADUA, D. A. The LRPD test:
Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEEE
Transactions on Parallel and Distributed System 10, 2
(1999), 160–172.

[21] ROTENBERG, E., JACOBSON, Q., SAZEIDES, Y., AND
SMITH, J. Trace processors. In Proceedings of Micro 30
(1997).

[22] STANDARD PERFORMANCE EVALUATION CORPORATION.
The SPEC Benchmark Suite. http://www.specbench.org.

[23] STEFFAN, J. G., COLOHAN, C. B., AND MOWRY, T. C.
Architectural Support for Thread-Level Data Speculation.
Tech. Rep. CMU-CS-97-188, School of Computer Science,
Carnegie Mellon University, November 1997.

[24] STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND
MOWRY, T. C. A Scalable Approach to Thread-Level
Speculation. In Proceedings of the 27th ISCA (June 2000).

[25] STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., AND
MOWRY, T. C. Improving Value Communication for
Thread-Level Speculation. In Proceedings of the 8th HPCA
(February 2002).

[26] SURA, Z., WONG, C.-L., FANG, X., MIDKIFF, J. L. S.,
AND PADUA, D. Automatic implementation of programming
language consistency models. In Sixth International
Symposium on Parallel Architectures, Algorithms and
Networks (LCPC’02) (2002).

[27] TJIANG, S., WOLF, M., LAM, M., PIEPER, K., AND
HENNESSY, J. Languages and Compilers for Parallel
Computing. Springer-Verlag, Berlin, Germany, 1992,
pp. 137–151.

[28] TSAI, J.-Y., HUANG, J., AMLO, C., LILJA, D., AND YEW,
P.-C. The Superthreaded Processor Architecture. IEEE
Transactions on Computers, Special Issue on Multithreaded
Architectures 48, 9 (September 1999).

[29] WILSON, R. P., AND LAM, M. S. Efficient context-sensitive
pointer analysis for c programs. In Proc. ACM SIGPLAN 95
Conference on Programming Language Design and
Implementation (June 1995), pp. 1–12.

[30] WOLFE, M. Optimizing Supercompilers for Supercomputers.
The MIT Press, Cambridge, Massachusetts, 1989.

[31] YEAGER, K. The MIPS R10000 superscalar microprocessor.
IEEE Micro (April 1996).

[32] ZHAI, A., COLOHAN, C. B., STEFFAN, J. G., AND
MOWRY, T. C. Compiler Optimization of Scalar Value
Communication Between Speculative Threads. In
Proceedings of the 10th ASPLOS (Oct 2002).

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

